

UNIVERSITEIT · STELLENBOSCH · UNIVERSITY jou kennisvennoot · your knowledge partner

PRINCIPLES OF TB EPIDEMIOLOGY IN CHILDREN INCLUDING CONTACT INVESTIGATION

ANNEKE C. HESSELING DESMOND TUTU TB CENTRE STELLENBOSCH UNIVERSITY IMPAACT TB TRAINING 29 MAY 2017

International Maternal Pediatric Adolescent AIDS Clinical Trials Group

Estimates for TB in children have doubled since 2013 Only 1/3 of children with TB are reported to WHO

TB in children (0-14 yrs) actual reported to WHO

2015 - 384,035↑7% 2014 - 358,956↑30% 2013 - 275,851

Best estimates: 2015 – 1 million cases and 210,000 deaths (HIV+ and HIV-)

2013 - 550,000 cases and 80,000 deaths (deaths only HIV negative)

Accounts for **10.5%** of the global caseload; higher in high-burden settings

"Know your epidemic"

Table 1: Estimates of tuberculosis exposure, latent infection, and disease in children in 22 high-burden countries in 2010

"The incidence of paediatric TB is higher than the number of notifications, particularly in young children. Estimates of current household exposure and cumulative infection suggest an enormous opportunity for preventive treatment."

Natural history of *M.tb* infection

www.oxfordimmunotech.com Online

Don Enarson, The Union

Global MDR TB Burden

Globally >500 000 (MDR) TB cases in 2014

- 30 000 estimated paediatric MDR-TB cases annually
- At least 500 000 children exposed annually to MDR-TB

Percent of new TB cases with MDR TB: Global TB Report 2015

Marais et al. Int J Tuberc Lung Dis. 2004

Historical public health approach to TB control and children

- Proper identification and treatment of infectious (adult) cases will also prevent childhood TB
- Childhood TB historically afforded low priority by NTP
 - Diagnostic challenges
 - Usually not infectious
 - Limited resources
 - Lack of recording and reporting
 - Disregard for morbidity and mortality and opportunities for TB prevention

NON-SEVERE TB

SEVERE TB (INCLUDING DISSEMINATED)

"A deterioration in the control of TB thus immediately hurts the youngest generation"

Rieder, 1997

Epidemiological relevance of TB in children

- Indication of epidemic control: failure of health systems
- Recent transmission: DS, DR-TB
- Unique spectrum and severity of disease especially in young
- Childhood TB is an epidemiological "sentinel event"

Children reflect TB transmission including MDR-TB

DST results	2003-05	2005-07	2007-09	2009-2011%
All cult+ cases	323 (%)	291 (%)	294 (%)	340 (%)
DSTs done*	320 (99.1)	285 (97.9)	292 (99.3)	340 (100)
Any DR	41 (12.8)	43 (15.1)	45 (15.4)	49 (14.4)
INH mono-R	22 (6.9)	22 (7.7)	15 (5.1)	19 (5.6)
RMP mono-R**	0	2 (0.7)	4 (1.4)	6 (1.8)
MDR-TB	19 (5.9)	19 (6.7)	26 (8.9)	24 (7.1)

Schaaf, IJTLD 2016

*Significant differences: RMR increase from 1^{st} to 4^{th} period: p = 0.03

Incomplete registration of hospital-diagnosed child TB cases: need for comprehensive surveillance

	Not registered n=101 (37.8%)	Registered n=166 (62.2%)	p-value
Clinical factors			
Disseminated TB	29 (28.7)	27 (16.3)	0.015*
Miliary TB	12 (11.9)	16 (9.6)	0.562
TB Meningitis	22 (21.8)	13 (7.8)	0.001*
Deaths prior to referral	10 (9.9)	0 (0.0)	<0.001*
Type of consultation			
Outpatient	16 (15.9)	41 (24.7)	0.087
Inpatient	85 (84.2)	125 (75.3)	
Admission (days)	16 (5, 29)	3 (9, 20)	0.052

Du Preez, PHA, 2012

Van Wyk, IJTLD, 2012

Key Transitions in TB : Who gets infected?

From: Rieder Epidemiologic Basis of Tuberculosis Control

Risk of TB infection

Tuberculous Infection Among Children by Type of Contact and Bacteriologic Status of Index Case, British Columbia and Saskatchewan, 1966 - 1971

Grzybowski S. Bull Int Union Tuberc 1975

Age standardised prevalence of *M.tb* infection in children (Mantoux test done n=25 048, read n= 22 563)

Comparison of crude Vs indirect age-standardised TB infection prevalence measures (TST>=15mm) by ZAMSTAR community

TB infection prevalence

Annual risk of TB infection (ARTI)

- Zambia: 2.8%
- South Africa: 4.2%

Shanaube, PLOS One, 2010

Verteilung der Indurationsdurchmesser nach 5 TU PPD (RT): Schulkinder, Oberer Nil, Sudan (n=856)

WHO Tuberculosis Research Office, 1955 und 1956

IGRA diagnostic accuracy for definite/probable TB

	Sensitivity		Specificity	
Index test	Participants (studies)	Sensitivity (95%CI)	Participants (studies)	Specificity (95%CI)
TST 5 mm	265 (13)	91 (84-98)	217 (4)	70 (17-100)
TST 10 mm	321 (15)	84 (75-93)	276 (5)	88 (62-100)
TST 15 mm	389 (11)	67 (50-83)	131 (3)	92 (71-100)
QFT-G	74 (5)	92 (82-100)	82 (1)	35 (0-80)
QFT-IT	393 (13)	77 (65-88)	568 (6)	92 (86-100)
QFT-G/QFT-IT combined	431 (17)	83 (75-92)	323 (7)	91 (78-100)
T-SPOT	336 (9)	84 (63-100)	143 (4)	94 (87-100)

Detjen, CID, 2016

 10 simple factors predict 70% of TST and/or IGRA+ children 0-5 years of age with household TB exposure

Risk factors for TB infection

Mandalakas, Hesseling, Thorax, 2012

Rationale for TB contact management

1. Detection of *M. tuberculosis* exposure/ infection

- "Relevant disease" in young children
- Relevant disease in immune compromised children (HIV, malnutrition)
- Effectively contained through preventive therapy

2. Detection of active (prevalent) TB in children and other high-risk contacts (HIV+, adolescents, DM)

3. Other household health opportunities (HIV)

Summary of contact management yield

•The overall yield for all TB (bacteriologically confirmed and clinically diagnosed) was 4.5% (95% CI 4.3-4.8, I(2)=95.5%) of contacts investigated; for cases with bacteriological confirmation the yield was 2.3% (95% CI 2.1-2.5, I(2)=96.6%).

•*M.tb* infection was found in 51.4% of contacts investigated.

• "Contact investigation merits serious consideration as a means to improve early case detection and decrease transmission of *M tuberculosis* in high-incidence areas".

More evidence to support screening of child contacts of TB cases: if not now, then when?

- 761 children from 351 households
- 79 TB cases
- 10% prevalent TB
- 71% bacteriologically confirmed

Evidence that informs the rationale for screening of children who are close contacts of a case of tuberculosis and for providing preventive therapy for this high-risk group has been available for >50 years [1, 2]. The policy is almost universally accepted, being included in global and almost all national tuberculosis control program guidelines [3]. However, in practice it is rarely implemented except in low-tuberculosis-burden, resource-rich settings [4]. Contact screening has 2 main roles. One is to identify at-risk contacts such as young or human immunodeficiency virus (HIV)-infected children who require preventive therapy. The other is to identify contacts of any age who have tuberculosis, that is, active, case finding.

Jaganath D, Clin Infec Dis 2013 Graham SM, Triasih R. Clin Infect Dis. 2013

Using TB contact management as quantification of paediatric disease burden

- Quantify number at-risk children (community, facility) indirect estimate of childhood TB burden
- Estimate number infected and diseased (who should be attending)
- Document who attended and TB prevention offered
- Earlier diagnosis and less severe TB disease detected

Contact investigation study: children with a documented TB source case less likely to have severe TB disease than those without (21% vs. vs. 44%; OR: 0.34, 95%CI: 0.12; 1.01, p=0.025)"

MDR-TB: Micronesia outbreak

- MDR TB outbreak in the Federated States of Micronesia, HH contacts treated with 12 months moxi or LVF, with or without ethambutol or ethionamide
- Of 119 infected contacts, 15 refused; 104 began treatment
- Of 104 who initiated treatment, 93 (89%) completed treatment
- 4 contacts discontinued due to adverse effects.
- None of the 104 contacts who tool preventive therapy of any duration developed MDR-TB disease
- 3 of 15 contacts who refused and 15 unidentified contacts developed MDR-TB
- Preventive regimens were safe and well tolerated.

Risk of infection, disease and MDR-TB in South African children

- 228 MDR-TB-exposed children <5 years of age enrolled
- 45% were TST positive
- 6.6% had prevalent TB at enrolment.
- Children without TB received a regimen of INH (15-20mg/kg), ofloxacin (15-20mg/kg) and ethambutol (20-25mg/kg) daily for 6 months. Ofloxacin was available at the time; LFX now used in children < 8 years.
- Children were monitored for clinical outcomes and adverse events, resulting in >200 patient years of followup. No SAEs detected

TB Among HH Contacts Exposed to MDR TB Patients in High & Middle Burden Countries

Author / Year	Population	Rate of TB (per 100 person- years) ^a	% MDR TB
Vella, 2011*	KZN,SA	4.0	43.8%
Grandjean, 2011	Lima, Peru	2.4	72%
Becerra, 2011	Lima, Peru	1.5	90.9%
Becerra, 2013	Lima, Peru	2.1 (children)2.6 (adults)	91%
Leung, 2013	Hong Kong	0.2	9.1%
Singla, 2011	Delhi, India	5.3%	12.5%

*% HH contacts exposed to MDR TB & XDR TB cases that died was 14% & 52% respectively

Shah et al CID 2014

Characteristics in children 0-5 with household MDR-TB vs. DS-TB

exposure	DS-TB exposure (n=316) N (%) or	MDR-TB exposure (n=228) N (%) or
	median (IQR)	median (IQR)
Child factors		
<1yr	48 (15.2)	50 (21.8)
1 yr	66 (20.9)	41 (17.9)
2 yrs	71 (22.5)	44 (19.2)
3 yrs	73 (23.1)	56 (24.5)
4 yrs	58 (18.4)	38 (16.6)
Male	162 (51.3)	119 (52.2)
Black African (vs. mixed race)	52 (16.5)	101 (44.1)***
HIV-positive	1 (0.3)	8 (3.7)**
BCG scar/vaccination documented	310 (98.1)	181 (81.2)***
Previous TB treatment	8 (2.5)	21 (9.2)**
WFA z-score <-2	32 (10.1)	23 (10.1)
Sleeps in same room as TB source case	79 (25.3)	34 (15.0)***
Sleeps in same bed as TB source case	20 (6.4)	57 (25.2)***
Adult source case /household factors		
Source case sputum acid-fast bacilli	181 (62.9)	180 (80.0)***
smear-positive		
Household tobacco smoke exposure	245 (80.4)	145 (63.3)***
Mean socioeconomic index (x/11), n, SD	4.0 (2.6)	4.1 (2.5)
Children's TB status		
Exposure no infection	205 (65.7)	125 (61.3)
Infection no disease (TST+)	80 (25.6)	86 (38.1)**
TB disease	27 (8.7)	15 (6.6)

	Total	Infected N (%)	AOR (95% CI)		
Child factors					
Age <2 years	203	64 (31.5%)	ref		
Age ≥2 years	335	144 (43%)	1.61 (1.09, 2.37)		
Female	259	96 (37.1%)	ref		
Male	278	112 (40.3%)	1.02 (0.70, 1.47)		
Mixed race / other ethnicity	390	161 (41.3%)	ref		
Black African ethnicity	148	47 (31.8%)	0.54 (0.33, 0.88)		
HIV-negative	518	202 (39%)	ref		
HIV-positive	9	3 (33.3%)	0.66 (0.15, 2.94)		
No BCG scar /no vaccination					
documented	45	16 (35.6%)	ref		
BCG scar/vaccination documented	487	191 (39.2%)	1.62 (0.80, 3.29)		
No prior TB treatment	509	189 (37.1%)	ref		
Prior TB treatment	29	19 (65.5%)	2.36 (1.03, 5.39)		
Weight for age (z-score) ≥-2	482	186 (38.6%)	ref		
Weight for age (z-score) <-2	54	21 (38.9%)	1.04 (0.56, 1.92)		
Sleeps in different room to TB					
source case	348	132 (37.9%)	ref		
Sleeps in same room as TB source					
case	113	40 (35.4%)	0.85 (0.53, 1.36)		
Sleeps in same bed as TB source					
case	77	36 (46.8%)	1.05 (0.60, 1.82)		
Adult source case/household factor	S				
DS-TB source case	312	107 (34.3%)	ref		
MDR-TB source case	226	101 (44.7%)	2.05 (1.34, 3.12)		
No household tobacco smoke					
exposure	144	50 (34.7%)	ref		
Household tobacco smoke					
exposure	394	158 (40.1%)	1.22 (0.76, 1.94)		

Characteristics associated with TB disease in child contacts: DS-TB vs. MDR-T

exposure

		I		
	Total	Disease N (%)	OR (95% CI)	AOR (95% CI)
Child factors				
Age<2 years	64	20 (31.3%)	ref	ref
Age ≥2 years	144	22 (15.3%)	0.40 (0.20, 0.80)	0.32 (0.15, 0.71)**
HIV negative	202	40 (19.8%)	ref	ref
HIV positive	3	2 (66.7%)	8.10 (0.72, 91.57)	23.0 (1.11, 477.86)*
No BCG scar / no vaccination documented	16	3 (18.8%)	ref	ref
BCG scar / vaccination documented	191	39 (20.4%)	1.11 (0.30, 4.09)	1.14 (0.21, 6.20)
Weight for age (z-score) ≥-2	186	34 (18.3%)	ref	ref
Weight for age (z-score) <-2	21	7 (33.3%)	2.24 (0.84, 5.96)	2.17 (0.72, 6.55)
Adult source case factors				
DS-TB	107	27 (25.2%)	ref	ref
MDR-TB	101	15 (14.9%)	0.52 (0.26, 1.04)	0.43 (0.19, 0.97)*
Smear-negative source case	43	4 (9.3%)	ref	ref
Smear-positive source case			2 84	

Risk of TB disease progression in children

Young age

- 43% of infants (children < 1year)
- 25% of children aged one to five years
- o 15% of adolescents
- Recent infection (1-2 years) children with close contact (e.g. household)
- Malnutrition
- HIV

Marais et al. Int J Tuberc Lung Dis. 2004

WHQ/HTM/TB/2006.3/1 WHQ/FCH/CAH/2006.7

Guidance for National Tuberculosis Programmes on the Management of Tuberculosis in Children

Box 5 Definitions used in contact screening

Source case	A case of pulmonary TB (usually sputum smear-positive) which results in infection or disease among contacts
Contacts for screening	All children aged under 5 years (whether sick or well) and children 5 years or older if symptomatic, who are in close contact with a source case
Close contact	Living in the same household as a source case (e.g. the child's caregiver) or in frequent contact with a source case

Figure 1 Approach to contact management when chest X-ray and tuberculin skin test are not readily available

WHO 2014 guidelines for preventive therapy for MDR TB contacts

- Treatment of presumptive MDR TB infection not recommended
 - Quality of evidence seriously limited
- Recommend strict clinical observation and close monitoring for TB disease for at least two years
- Clinicians as part of sound clinical practice can consider individually tailored preventive treatment
- Urgent need for high-quality data

	ТВ-СНАМР	V-QUIN	PHOENIx (A5300/I2003)
Intervention	LVF (novel paediatric dispersible formulation) vs. placebo daily for 6 months	LVF vs. placebo daily for 6 months	DLM vs standard dose INH daily for 26 weeks
Design	Cluster randomized; superiority Community-based	Cluster randomized; superiority Community-based	Cluster randomized; superiority Community-based
Target Population	• 0-5 y regardless of TST or HIV status	 All ages Paediatric enrolment currently on hold TST + 	 HIV + Children 0-5 yrs TST/IGRA + > 5 y
Assumptions	LVF decreases TB incidence from 7 to 3.5% 80% power	LVF decreases TB incidence by 70% from 3% untreated 80% power	DLM decreases TB incidence by 50% from 5% to 2.5% 90% power
Sample size	778 Households 1556 contacts	1326 Households 2785 contacts	1726 Households 3452 contacts
Sites	South Africa	Viet Nam NTP	ACTG & IMPAACT sites
Timelines to open	Q1 2017 (lead-in)	Open (Q1 2016)	Q1 2018
Funder, PI	BMRC/Wellcome Trust/DFID, SA MRC SHIP; Hesseling, Seddon	Australian MRC Fox, Nguyen	DAIDS, ACTG/IMPAACT Churchyard, Gupta, Hesseling, Swindells

Phoenix: Lessons learnt

- Importance of paediatric TB expertise at non-IMPAACT sites and integration with other child health services
- Appropriate sampling of children for TB confirmation (gastric aspirates, sputum) to ensure adequate number confirmed cases (efficacy trial): paucibacillary disease
- Inadequate enrollment of children 0-5 years
- Importance of central CXR review (case definitions); majority of children (70%) will have clinically diagnosed TB
- Importance of clinical follow-up for diagnosis

Summary: key principles

- Childhood TB is a sentinel event
- Indicator of ongoing (recent) transmission: DS and DR-TB
- TB burden in children varies by in-country TB incidence
- Children may be exposed in and outside of the household but household key opportunity
- Improved surveillance of TB in children important: diagnosis, treatment, recording and reporting
- Rigorous evidence based need for MDR-TB prevention

