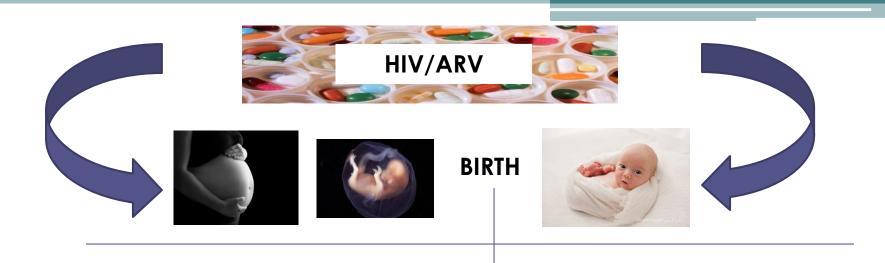
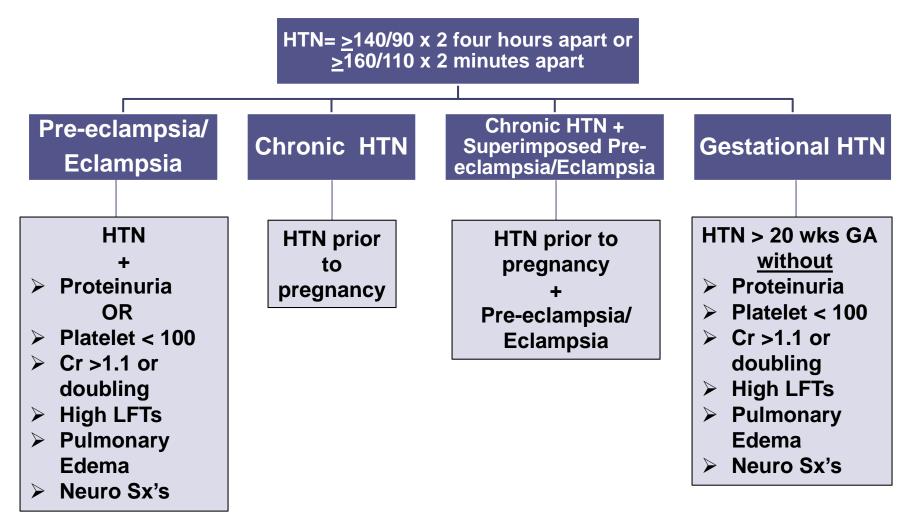

Antiretrovirals in Pregnancy: "The Good, the Bad, and the Unknown"

Jennifer Jao, MD, MPH Icahn School of Medicine at Mount Sinai


I receive financial support from the following company or companies related to the products listed below. These relationships may lead to bias in my presentation.

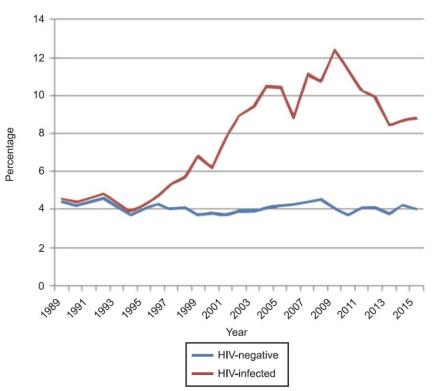
Entity	Type(s) of relationship(s)	Product name(s)	Relevant disease(s) or condition(s)
NONE			

Source: UNICEF analysis of UNAIDS 2016 estimates.


UNAIDS 2016. For Every Child, End AIDS, 7th Stocktaking Report.

- Hypertensive disorders of pregnancy (Preeclampsia/ecla mpsia, PIH)
- Preterm birth
- Birth weight (LBW, SGA)
- Bone
- Mitochondrial Toxicity

Gestational DM


Hypertensive Disorders of Pregnancy

ACOG. 2013. Obstetrics Gynecol. Hypertension in Pregnancy

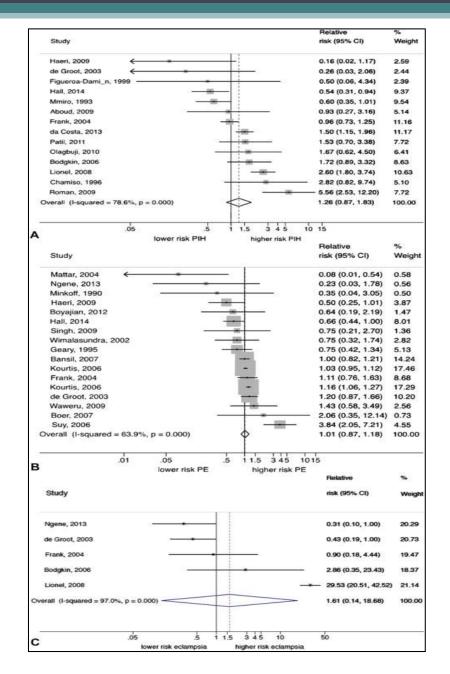
Hypertensive Disorders in Pregnancy

- Overall prevalence of pre-eclampsia worldwide = 2-8% (1987-2005)
- WITS 1989-1994
 - 9/634 (1.9%) PIH
 - 4/634 (0.7%) preeclampsia

Fig. 3. Incidence of preeclampsia at University of Naples Federico II from 1989 to 2015. HIV, human immunodeficiency virus.

ACOG. Diagnosis Management Preeclampsia Eclampsia.2002 Wallis A et al. Am J Hyperten. 2008 Duley L et al. Semin Perinatol. 2009. Dolea C et al. Global Burden of Disease. 2000. Stratton P et al. JAIDS. 1999 Sansone M et al. Obstet Gynecol. 2016

First	Publication		%
Author	date	country Odds Ratio (95% CI)	Weight
Pregnancy induced hy	pertension		
Aboud et al.	2009	Africa mix 1.52 (0.46, 5.04)	5.60
Bodkin et al.	2005	South Africa 1.86 (0.88, 3.92)	9.67
Chamiso	1996	Ethiopia 2.95 (0.81, 10.72)	5.07
Figueroa-Damian	1999	Mexico 0.49 (0.05, 4.51)	2.11
Frank et al.	2004	South Africa	16.25
Haeri et al.*	2009	USA 0.18 (0.02, 1.40)	2.29
Kourtis et al.	2006	USA • 1.09 (1.02, 1.17)	17.56
Lionel et al.	2008	India 3.02 (1.90, 4.80)	13.40
Mmiro et al.	1993	Uganda 0.58 (0.34, 1.01)	12.22
Olagbuji et al.	2010	Nigeria 1.70 (0.61, 4.77)	6.84
Roman-Poueriet et al	. 2009	Dominican Republic 5.69 (2.54, 12.74)	8.98
Subtotal (I-squared =	= 79.3%, p = 0	0.000) 1.46 (1.03, 2.05)	100.00
• Pre-eclampsia			
Boer et al.	2006	Holland 2.02 (0.28, 14.57)	5.31
De Groot et al.	2003	South Africa 1.36 (0.79, 2.33)	15.29
Frank et al.	2004	South Africa 0.97 (0.59, 1.62)	15.57
Haeri et al.*	2009	USA 0.55 (0.26, 1.18)	13.35
Mattar et al.	2004	Brazil 0.07 (0.01, 0.49)	5.32
Singh et al.	2009	India 0.73 (0.19, 2.90)	8.36
Suy et al.	2006	Spain 4.18 (2.07, 8.46)	13.83
Waweru et al.	2009	Kenya 1.52 (0.53, 4.32)	10.80
Wimalasundera et al.	2002	UK 0.74 (0.30, 1.79)	12.17
Subtotal (I-squared =	= 70.5%, p = 0		100.00
Eclampsia			
Bodkin et al.	2005	South Africa 2.91 (0.35, 24.52)	23.16
De Groot et al.	2003	South Africa 0.39 (0.15, 0.98)	25.88
Frank et al.	2004	South Africa 0.90 (0.18, 4.46)	24.54
Lionel et al.	2008	India 38.47 (24.21, 61.14)	
Subtotal (I-squared =	= 96.6%, p = 0		100.00
NOTE: Weights are fro	om random ef	fects analysis	

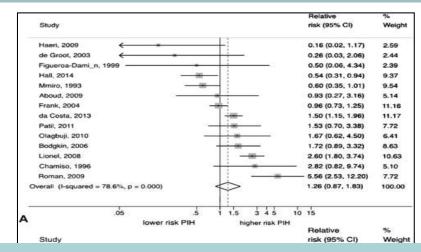

Figure 3. Forest plot showing the strength of association between HIV and hypertensive diseases of pregnancy. *Adjusted odds ratio. doi:10.1371/journal.pone.0074848.g003

Calvert et al. PLOSOne. 2013

First	Publicatio	n		%
Author	date	country	Odds Ratio (95% CI)	Weight
Pregnancy induced	hypertension			
Aboud et al.	2009	Africa mix	1.52 (0.46, 5.04)	5.60
3odkin et al.	2005	South Africa	1.86 (0.88, 3.92)	9.67
Chamiso	1996	Ethiopia	2.95 (0.81, 10.72)	5.07
-igueroa-Damian	1999	Mexico	0.49 (0.05, 4.51)	2.11
Frank et al.	2004	South Africa	 1.01 (0.79, 1.28) 	16.25
Haeri et al.*	2009	USA 🛛	0.18 (0.02, 1.40)	2.29
Kourtis et al.	2006	USA	 1.09 (1.02, 1.17) 	17.56
_ionel et al.	2008	India	3.02 (1.90, 4.80)	13.40
Mmiro et al.	1993	Uganda		
Olagbuji et al.	2010	Nigeria	H RR (95% CI) = 1.46 (1.03)
Roman-Poueriet et	t al. 2009	Dominican Republic		
Subtotal (I-square	d = 79.3%, p =	= 0.000)	2.05) for Pre	egnancy-
⊃re-eclampsia			induced HT	N comparing
Boer et al.	2006	Holland		• companing
De Groot et al.	2003	South Africa	🛨 HIV+ vs. HIV	/_
Frank et al.	2004	South Africa	➡ 111V + V3.111	v -
Haeri et al.*	2009	USA 🗕	0.55 (0.26, 1.18)	13.35
Vattar et al.	2004	Brazil 🗧 🔹	0.07 (0.01, 0.49)	5.32
Singh et al.	2009	India	0.73 (0.19, 2.90)	8.36
Suy et al.	2006	Spain	4.18 (2.07, 8.46)	13.83
Naweru et al.	2009	Kenya	1.52 (0.53, 4.32)	10.80
Nimalasundera et a	al. 2002	UK -	0.74 (0.30, 1.79)	12.17
Subtotal (I-square	d = 70.5%, p =	= 0.001)	1.04 (0.60, 1.79)	100.00
Eclampsia				
Bodkin et al.	2005	South Africa	2.91 (0.35, 24.52)	23.16
De Groot et al.	2003	South Africa	0.39 (0.15, 0.98)	25.88
Frank et al.	2004	South Africa	0.90 (0.18, 4.46)	24.54
ionel et al.	2008	India	38.47 (24.21, 61.14)	26.42
Subtotal (I-square			2.56 (0.15, 44.11)	100.00
NOTE: Weights are	from random	effects analysis		

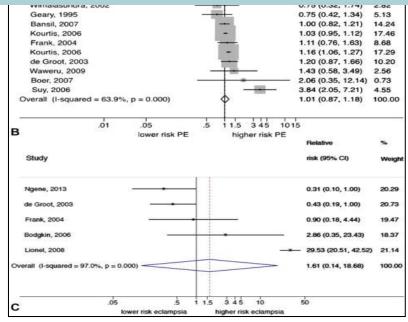
Figure 3. Forest plot showing the strength of association between HIV and hypertensive diseases of pregnancy. *Adjusted odds ratio. doi:10.1371/journal.pone.0074848.g003

Calvert et al. PLOSOne. 2013



Pregnancy-induced HTN RR (95% CI): 1.26 (0.87-1.83)

Pre-eclampsia: RR (95% Cl): 1.01 (0.87-1.18)


Eclampsia RR (95% CI): 1.61 (0.14-18.68)

Browne et al. JAIDS 2015.

Pregnancy-induced HTN RR (95% CI): 1.26 (0.87-1.83)

No association between HIV+ status and any of the outcomes (PIH, Pre-eclampsia, or Eclampsia

Eclampsia RR (95% CI): 1.61 (0.14-18.68)

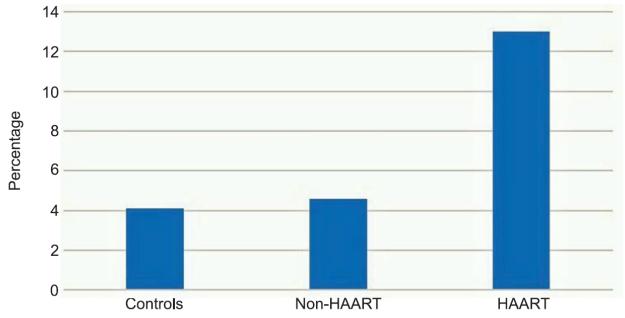
Browne et al. JAIDS 2015.

Original Research

Risk of Preeclampsia in Human Immunodeficiency Virus–Infected Pregnant Women

Matilde Sansone, MD, Laura Sarno, MD, Gabriele Saccone, MD, Vincenzo Berghella, MD, Giuseppe Maria Maruotti, MD, Annalisa Migliucci, MD, Angela Capone, MD, and Pasquale Martinelli, MD

Variables	HIV-Infected (n=453)	Comparison Group (n=84,272)	Crude OR (95% CI)	Adjusted OR (95% CI)
Preeclampsia	46 (10.2)	3,416 (4.1)	3.01 (2.21-3.57)	2.68 (1.96-3.64)
Preeclampsia with severe features	18 (4.0)	1,680 (2.0)	2.57 (1.31-3.05)	2.03 (1.26-3.28)
Early-onset preeclampsia	16 (3.5)	1,214 (1.4)	2.87 (1.66-4.07)	2.50 (1.51-4.15)
Late-onset preeclampsia	30 (6.6)	2.202 (2.6)	2.77 (1.91-3.94)	2.64 (1.82-3.85)
Preterm birth at less than 37 wk of gestation	50 (11.0)	3,982 (4.7)	2.81 (1.94–3.44)	2.50 (1.86-3.37)


Original Research

Risk of Preeclampsia in Human Immunodeficiency Virus–Infected Pregnant Women

Matilde Sansone, MD, Laura Sarno, MD, Gabriele Saccone, MD, Vincenzo Berghella, MD, Giuseppe Maria Maruotti, MD, Annalisa Migliucci, MD, Angela Capone, MD, and Pasquale Martinelli, MD

Variables	HIV-Infected (n=453)	Comparison Group (n=84,272)	Crude OR (95% CI)	Adjusted OR (95% CI)
Preeclampsia	46 (10.2)	3,416 (4.1)	3.01 (2.21-3.57)	2.68 (1.96-3.64)
Preeclampsia with severe features	18 (4.0)	1,680 (2.0)	2.57 (1.31-3.05)	2.03 (1.26-3.28)
Early-onset preeclampsia	16 (3.5)	1,214 (1.4)	2.87 (1.66-4.07)	2.50 (1.51-4.15)
Late-onset preeclampsia	30 (6.6)	2.202 (2.6)	2.77 (1.91-3.94)	2.64 (1.82-3.85)
Preterm birth at less than 37 wk of gestation	50 (11.0)	3,982 (4.7)	2.81 (1.94–3.44)	2.50 (1.86–3.37)

Sansone et al. Obstet Gynecol. 2016

Fig. 2. Incidence of preeclampsia in HIV-negative pregnant women (4.1%; n=84,272) and in HIV-infected pregnant women stratified by therapy in the non-HAART (highly active antiretroviral therapy) group (4.6%; n=152) and in the HAART group (13.0%; n=301). HIV, human immunodeficiency virus.

Hypertension, preeclampsia and eclampsia among HIV-infected pregnant women from Latin America and Caribbean countries[‡]

Elizabeth Stankiewicz Machado ^{a,*}, Margot R. Krauss ^b, Karen Megazzini ^b, Conrado Milani Coutinho ^c, Regis Kreitchmann ^d, Victor Hugo Melo ^e, José Henrique Pilotto ^f, Mariana Ceriotto ^g, Cristina B. Hofer ^a, George K. Siberry ^h, D. Heather Watts ^h, for the NICHD International Site Development Initiative (NISDI) Pediatric Protocol

Hypertensive Disorder in Pregnancy = 4.8% (73/1513) Pre-eclampsia/ Eclampsia = 2.3% (35/1513)

Tuble 5 That togistic regression model.		
Covariates	Final model-HD OR (95%CI)	Final model-PE/E OR (95%CI)
<u>gBMI:</u> \geq 25 kg/m ² vs. <25 kg/m ²	3.1 (1.9-5.0)	3.0 (1.5-6.0)
Hg at L&D: ≥11 g/dL vs. <11 g/dL	2.1 (1.2-3.6)	2.8 (1.2-6.5)
Maternal age: ≥35 yr vs. <35 yr	1.8 (1.1–3.2)	NA
ARV type at conception: HAART vs. non-HAART	NA	2.3 (1.1-4.9)
Previous history of PE/E: Yes vs. No	NA	6.7 (1.8-25.5)

Table 3	Final	logistic	regression	model. ^a
---------	-------	----------	------------	---------------------

HD - hypertensive disorders; PE/E - preeclampsia/eclampsia; NA - not applicable.

^a Forcing CD4 and viral load at enrollment or at L&D had no impact on the final models.

Hypertension, preeclampsia and eclampsia among HIV-infected pregnant women from Latin America and Caribbean countries[‡]

Elizabeth Stankiewicz Machado ^{a,*}, Margot R. Krauss ^b, Karen Megazzini ^b, Conrado Milani Coutinho ^c, Regis Kreitchmann ^d, Victor Hugo Melo ^e, José Henrique Pilotto ^f, Mariana Ceriotto ^g, Cristina B. Hofer ^a, George K. Siberry ^h, D. Heather Watts ^h, for the NICHD International Site Development Initiative (NISDI) Pediatric Protocol

Hypertensive Disorder in Pregnancy = 4.8% (73/1513) Pre-eclampsia/ Eclampsia = 2.3% (35/1513)

Covariates	Final model-HD OR (95%CI)	Final model-PE/E OR (95%CI)
gBMI: \geq 25 kg/m ² vs. <25 kg/m ²	3.1 (1.9–5.0)	3.0 (1.5-6.0)
Hg at L&D: \geq 11 g/dL vs. <11 g/dL	2.1 (1.2-3.6)	2.8 (1.2-6.5)
Maternal age: >35 yr vs. <35 yr	1.8 (1.1-3.2)	NA
ARV type at conception: HAART vs. non-HAART	NA	2.3 (1.1-4.9)
Previous history of PE/E: Yes vs. No	ŇÁ	6.7 (1.8-25.5)

Table 3	Final	logistic	regression	model. ^a
---------	-------	----------	------------	---------------------

HD - hypertensive disorders; PE/E - preeclampsia/eclampsia; NA - not applicable.

^a Forcing CD4 and viral load at enrollment or at L&D had no impact on the final models.

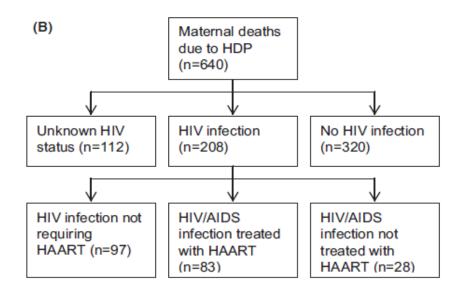
Increased risk of pre-eclampsia and fetal death in HIV-infected pregnant women receiving highly active antiretroviral therapy

Anna Suy^a, Esteban Martínez^b, Oriol Coll^a, Montserrat Lonca^b, Montserrat Palacio^a, Elisa de Lazzari^b, María Larrousse^b, Ana Milinkovic^b, Sandra Hernández^a, José L. Blanco^b, Josep Mallolas^b, Agathe León^b, Juan A. Vanrell^a and José M. Gatell^{b,*}

Table. Multivariate Models Comparing HAART Use Prior toPregnancy vs. No HAART Use Prior to Pregnancy AmongstHIV-infected Women Subgroup

Pre-eclamps	sia	Pre-eclampsia or Fetal Death		
aOR (95% CI)	<i>p</i> value	aOR (95% CI)	<i>p</i> value	
8.9 (1.7-45.5)	0.009	5.6 (1.7-18.1)	0.004	

* Adjusted for age, race, intravenous drug use, multiple gestation, multiparity, tobacco smoking



Obstetrics

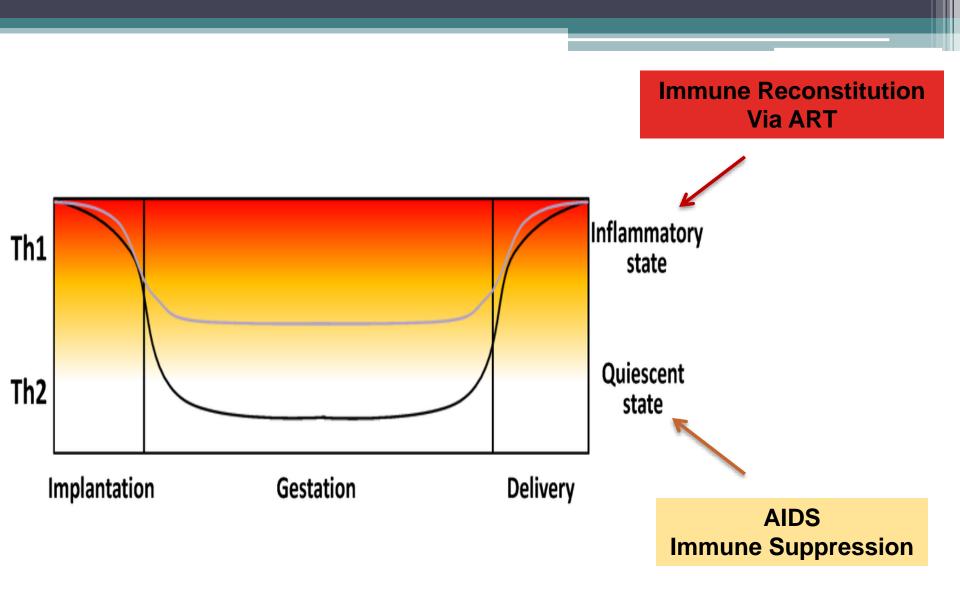
Associations between HIV, highly active anti-retroviral therapy, and hypertensive disorders of pregnancy among maternal deaths in South Africa 2011–2013

Hannah M. Sebitloane^{1*} | Jagidesa Moodley² | Benn Sartorius³

- Secondary analysis of extrapolated report data from "Saving Mothers Report 2014" in South Africa
- Between 2011-2013:
- n=4452 maternal deaths overall
- n=640 maternal deaths due to hypertensive disorder of pregnancy (HDP)

FIGURE 1 Flow of maternal death records for analysis. HIV status details among all maternal death records (A). HIV status details among maternal deaths due to hypertensive disorders of pregnancy (B). Abbreviations: HAART, highly active anti-retroviral therapy; HDP, hypertensive disorders of pregnancy.

TABLE 1 Comparison of relative risks of maternal death being due to HDP.


Comparison	No. of maternal deaths due to HDP ^a	RR (95% CI)
Effect of HIV infection on risk of de	eath due to HDP)
All individuals with HIV infections (n=2516)	208 (8.3)	0.57 (0.51-0.64)
Individuals without HIV infections (n=1351)	320 (23.7)	Referent
Effect of HIV infection	Г	
Individuals with HIV infections not requiring HAART (n=629)	97 (15.4)	0.68 (0.57-0.82)
Individuals without HIV infections (n=1351)	320 (23.7)	Referent
Effect of immuno-compromised co	nditions	
Individuals with AIDS not receiving HAART (n=647)	28 (4.3)	0.42 (0.30-0.58)
Individuals with HIV infections not requiring HAART (n=629)	97 (15.4)	Referent
Effect of immuno-compromised co	nditions	
Individuals with AIDS not receiving HAART (n=647)	28 (4.3)	0.21 (0.15-0.31)
Individuals without HIV infections (n=1351)	320 (23.7)	Referent
Effect of treatment with HAART		
Individuals with AIDS receiving HAART (n=1240)	83 (6.7)	0.39 (0.32-0.47)
Individuals without HIV infections (n=1351)	320 (23.7)	Referent
Effect of treatment with HAART		
Individuals with AIDS receiving HAART (n=1240)	83 (6.7)	0.67 (0.57-0.79)
Individuals with HIV infections not requiring HAART (n=629)	97 (15.4)	Referent
Effect of treatment with HAART		
Individuals with AIDS receiving HAART (n=1240)	83 (6.7)	1.15 (1.02-1.29)
Individuals with AIDS not receiving HAART (n=647)	28 (4.3)	Referent

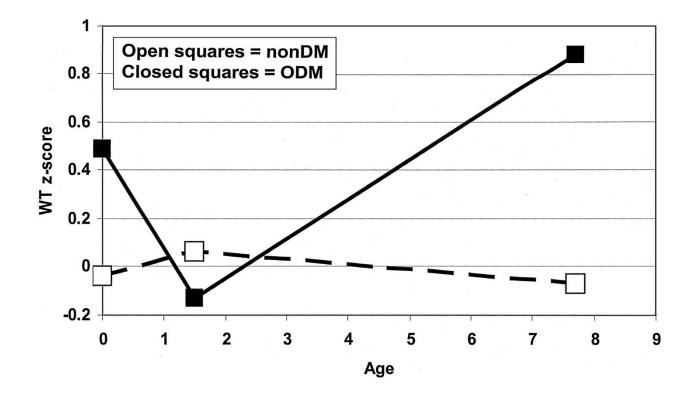
HIV+ (CD4>200) not requiring combination ART associated with LOWER risk than HIV-

Amongst those not receiving combination ART: AIDS/CD4<200 associated with <u>LOWER</u> risk than those with CD4>200

Amongst AIDS/CD4<200: Combination ART associated with <u>HIGHER</u> risk than those not receiving any ART

Sebitloane et al. Obstet Gynecol. 2016

Hypertensive Disorders of Pregnancy and HIV/ART


- Difficulty in accurate assessments of incidence across time and geography due to heterogeneity diagnosis
- Conflicting epidemiological evidence
- Increased inflammation likely plays a role in pre-elampsia
- Immune reconstitution with combination ART era may have an effect on increasing rates of preeclampsia

Gestational Diabetes

- 2-7% of all pregnancies
- GDM and poor maternal outcomes:
 - Gestational hypertension
 - Pre-eclampsia/eclampsia
 - Increased UTI
 - Increased risk of thyroid disease
 - Increased risk of diabetes post-partum
- GDM and fetal/infant outcomes:
 - Congenital anomalies
 - Spontaneous abortion
 - Preterm birth
 - Macrosomia
 - IUGR/ SGA
 - Neonatal hypoglycemia

Gestational Diabetes

- GDM and long term infant outcomes:
 - Increased risk of developing obesity

Diagnostic thresholds for GDM Diagnosis

	75g OGT	Т	100g OGTT		
	WHO	ADA	IADPSG	Carpenter & Coustan	National Diabetes Data Group
Fasting (mg/dL)	126	92	92	95	105
1h		180	180	180	190
2h	140	153	153	155	165
3h				140	145
Criteria	<u>></u> 1 abn	<u>></u> 1 abn	<u>></u> 1 abn	<u>></u> 2 abn	<u>></u> 2 abn

WHO. Definition, Diagnosis and Classification of DM and its Complications: Report of a WHO Consultation. Geneva. 1999.

ADA Position Statement. Diabetes Care. January 2011 and 2013.

IADPSG Consensus Panel Statement. Diabetes Care. March 2010.

Carpenter & Coustan. Am J Obstetrics & Gynecology. 1982.

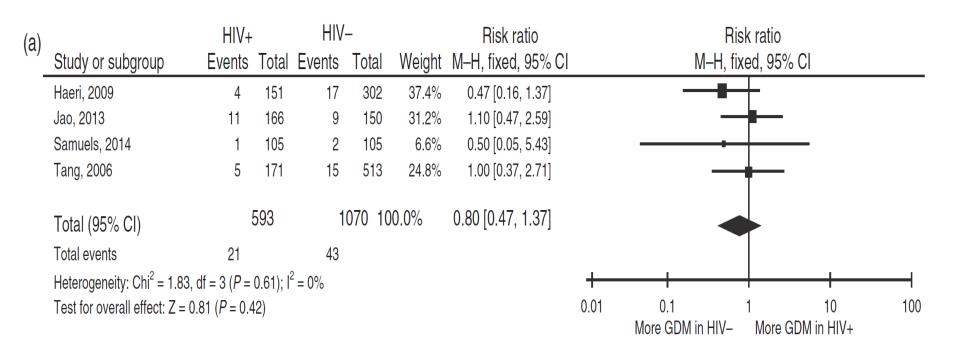
National Diabetes Data Group. Classification and diagnosis of DM and other categories of glucose intolerance. Diabetes. 1979.

Diagnostic thresholds for GDM Diagnosis

	75g OG	ГТ		100g OGTT	
	WHO			Corponter & n	National Diabetes Data Group
Fasting (mg/dL)	126				105
1h					190
2h	140				165
3h			20		145
Criteria	<u>></u> 1 abn	<u>></u> 1 abn	<u>></u> 1 abn	<u>></u> 2 abn	<u>></u> 2 abn

WHO. Definition, Diagnosis and Classification of DM and its Complications: Report of a WHO Consultation. Geneva. 1999.

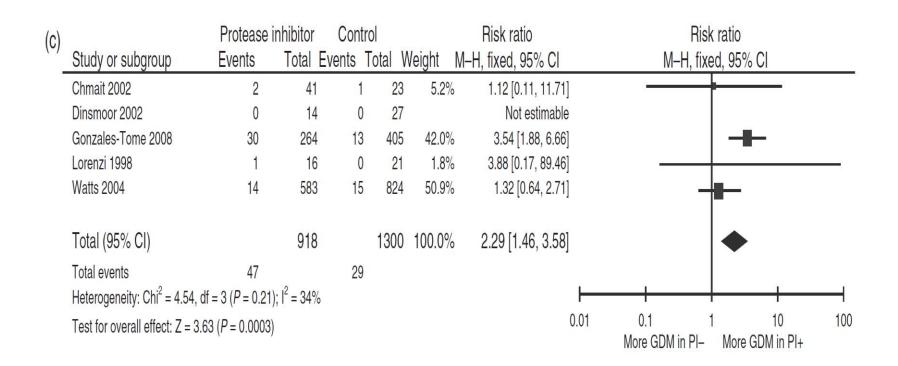
ADA Position Statement. Diabetes Care. January 2011 and 2013.

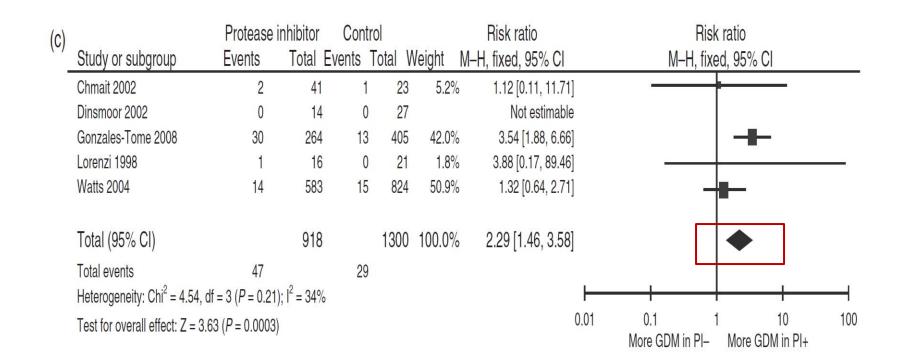

IADPSG Consensus Panel Statement. Diabetes Care. March 2010.

Carpenter & Coustan. Am J Obstetrics & Gynecology. 1982.

National Diabetes Data Group. Classification and diagnosis of DM and other categories of glucose intolerance. Diabetes. 1979.

The association between HIV, antiretroviral therapy, and gestational diabetes mellitus


Larske M. Soepnel^{a,b}, Shane A. Norris^b, Verena J.M.M. Schrier^a, Joyce L. Browne^a, Marcus J. Rijken^{a,c}, Glenda Gray^d and Kerstin Klipstein-Grobusch^{a,e}



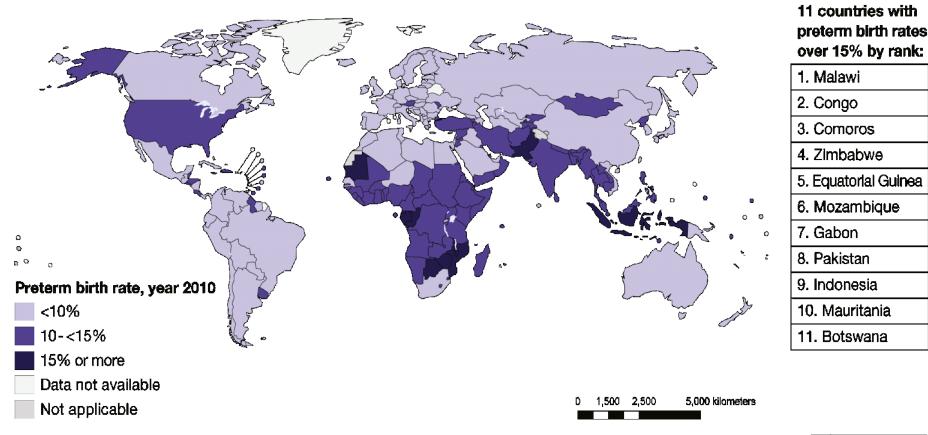
No association between HIV infection and GDM

	HIV-infected	women ($n = 166$)	
	GDM (n = 11)	Without GDM $(n = 155)$	Р
Age (years)	30.5 (27.5–34.5)	28 (25–32)	0.04
Gestational age at OGTT (weeks)	29 (27–30)	27 (25–30)	NS
Gravidity	1 (1–3)	1 (0-2)	NS
Family history of DM	2 (18.2)	19 (12.3)	NS
Family history of hypertension	3 (27.3)	43 (27.7)	NS
Prepregnancy BMI (kg/m ²)	25.2 (24–29)	25.4 (23.5–28.2)	NS
Systolic BP at OGTT (mmHg)	118 (115–120)	105 (98–111)	0.02
Diastolic BP at OGTT (mmHg)	76 (72–80)	64 (63–69)	0.0
Preeclampsia during pregnancy	0 (0)	2 (1.3)	NS
CD4 cell count at OGTT			
(cells/mm ³)			NS
<50	0 (0)	13 (8.4)	
50–199	4 (36.4)	20 (12.9)	
200–350	2 (18.2)	42 (27.1)	
>350	5 (45.5)	80 (51.6)	
On cART at OGTT	10 (90.9)	84 (54.2)	0.02
C-section delivery	1 (9.1)	14 (9)	NS
Stillbirth/IUFD	0 (0)	3 (2.2)	NS
Birth weight (grams)	3,228 (3,000-3,500)	3,300 (3,000–3,500)	NS

- Cameroon Study of HIV+ and HIV-Pregnant Women
- n=316
- Rates GDM:
- HIV+ 6.6%
- **HIV-** 6.0%

Increased risk of GDM with 1st generation PI use vs. no PI exposure

(d)		Protease inh	ibitor	Contr	ol		Risk ratio	Risk ratio
()	Study or subgroup	Events	Total	Events	Total	Weight	M–H, random, 95% Cl	M–H, random, 95% Cl
	1.1.1 National diabetes	data group 3h	OGTT					
	Dinsmoor 2002	0	14	0	27		Not estimable	
	Gonzales-Tome 2008	30	264	13	405	26.7%	3.54 [1.88, 6.66]	
	Marti 2007	13	94	2	73	17.7%	5.05 [1.18, 21.67]	-
	Tang, 2006	4	77	1	94	11.8%	4.88 [0.56, 42.79]	
	Subtotal (95% CI)		449		599	56.2%	3.81 [2.18, 6.67]	•
	Total events	47		16				
	Heterogeneity: $Tau^2 = 0.00$ Test for overall effect: Z = 4 1.1.2 Carpenter and Co	4.68 (<i>P</i> < 0.00001)	.88); l ² = 0	%			
	Chmait 2002	2	41	1	23	10.7%	1.12 [0.11, 11.71]	
	Hitti 2007	6	76	7	73	22.2%	0.82 [0.29, 2.33]	
	Moore 2015	2	133	1	9	10.9%	0.14 [0.01, 1.35]	_
	Subtotal (95% CI)	-	250		105	43.8%	0.63 [0.23, 1.72]	
	Total events	10	200	9	100	101070		•
	Heterogeneity: Tau ² = 0.11	; Chi ² = 2.24, df =	2 (<i>P</i> = 0	.33); l ² = 1	1%			
	Test for overall effect: Z = 0		,					
	Total (95% CI)		699		704	100.0%	1.75 [0.68, 4.54]	
	Total events	57		25				
	Heterogeneity: Tau ² = 0.78	; Chi ² = 13.41, df	= 5 (<i>P</i> =	0.02); l ² =	63%		⊢	
	Test for overall effect: Z = 1	.16 (<i>P</i> = 0.25)	-	-			0.001	0.1 1 10 1000
	Test for subgroup difference		f = 1 (<i>P</i> =	= 0.002); I ²	= 89.4%	6		More GDM in PI- More GDM in PI+
				-				

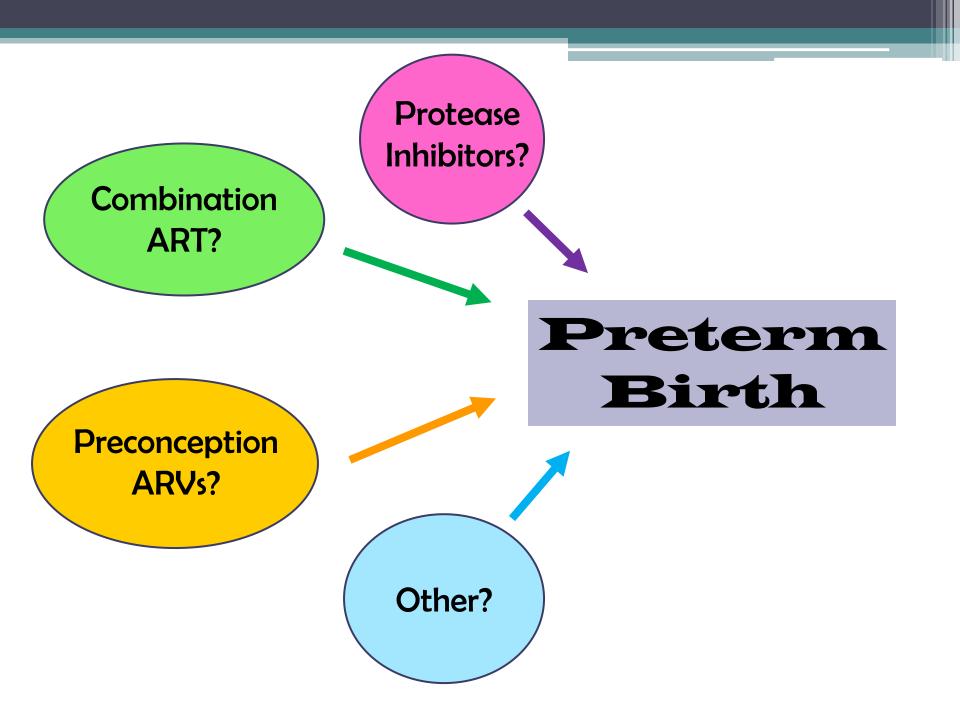

(d)		Protease inh		Cont			Risk ratio	Risk ratio	
F	Study or subgroup	Events		Events	Total	Weight	M–H, random, 95% Cl	M–H, random, 95% Cl	
	1.1.1 National diabetes	data group 3h	OGTT						
L	Dinsmoor 2002	0	14	0	27		Not estimable		
	Gonzales-Tome 2008	30	264	13	405	26.7%	3.54 [1.88, 6.66]		
	Marti 2007	13	94	2	73	17.7%	5.05 [1.18, 21.67]		
	Tang, 2006	4	77	1	94	11.8%	4.88 [0.56, 42.79]		
	Subtotal (95% CI)		449		599	56.2%	3.81 [2.18, 6.67]		
	Total events	47		16					
	Heterogeneity: $Tau^2 = 0.00$; Test for overall effect: Z = 4 1.1.2 Carpenter and Co	.68 (<i>P</i> < 0.00001)	.88); l ² = 0	%				
	Chmait 2002	2	41	1	23	10.7%	1.12 [0.11, 11.71]		
	Hitti 2007	6	76	7	73	22.2%	0.82 [0.29, 2.33]		
	Moore 2015	2	133	. 1	9	10.9%	0.14 [0.01, 1.35]	_	
	Subtotal (95% CI)	-	250		105	43.8%	0.63 [0.23, 1.72]		
	Total events	10		9					
	Heterogeneity: Tau ² = 0.11;	Chi ² = 2.24. df =	2(P = 0)	.33): ² = 1	1%				
	Test for overall effect: $Z = 0$		_ (,					
	Total (95% CI)		699		704	100.0%	1.75 [0.68, 4.54]	•	
	Total events	57		25					
	Heterogeneity: Tau ² = 0.78;	Chi ² = 13.41, df	= 5 (<i>P</i> =	0.02); I ² =	63%		⊢		
	Test for overall effect: Z = 1						0.001	0.1 1 10 1000	
	Test for subgroup difference		f = 1 (<i>P</i> =	: 0.002): I ²	= 89.4%	6		More GDM in PI- More GDM in PI+	
	5	-)	`	11 -					

		Protease inf	nibitor	Conti	ol		Risk ratio	Risk ratio
Study or s	subgroup	Events	Total	Events	Total	Weight	M–H, random, 95% Cl	M–H, random, 95% Cl
1.1.1 Nat	ional diabetes	s data group 3h	OGTT					
Dinsmoor 2	2002	0	14	0	27		Not estimable	
Gonzales-	ome 2008	30	264	13	405	26.7%	3.54 [1.88, 6.66]	
Marti 2007		13	94	2	73	17.7%	5.05 [1.18, 21.67]	
Tang, 2006	6	4	77	1	94	11.8%	4.88 [0.56, 42.79]	
Subtotal (95% CI)		449		599	56.2%	3.81 [2.18, 6.67]	•
Total event	· · ·	47		16				
		4.68 (<i>P</i> < 0.00001 oustan 3h OGT						
Chmait 200)2	2	41	1	23	10.7%	1.12 [0.11, 11.71]	
Hitti 2007		6	76	7	73	22.2%	0.82 [0.29, 2.33]	
Moore 201	5	2	133	1	9	10.9%	0.14 [0.01, 1.35]	
Subtotal (95% CI)		250		105	43.8%	0.63 [0.23, 1.72]	
Total event		10		9				
Heterogene	eity: Tau ² = 0.11	l; Chi ² = 2.24, df =	= 2 (<i>P</i> = 0	.33); l ² = 1	1%			
Test for over	erall effect: Z = 0	0.90 (<i>P</i> = 0.37)						
Total (95°	% CI)		699		704	100.0%	1.75 [0.68, 4.54]	•
Total event	S	57		25				
Heterogene	eity: Tau ² = 0.78	3; Chi ² = 13.41, df	= 5 (<i>P</i> =	0.02); I ² =	63%		H	
Test for over	erall effect: Z =	1.16 (<i>P</i> = 0.25)					0.001	0.1 1 10 1000
Test for sul	ogroup differenc	ces: Chi ² = 9.46, c	lf = 1 (<i>P</i> =	= 0.002); l ²	= 89.4%	6		More GDM in PI- More GDM in PI+

Gestational Diabetes and HIV/ART

- Overall rates of GDM in HIV+ and HIVwomen appear to be similar
- However, large heterogeneity in ART used during pregnancy across studies
- 1st generation PIs potentially associated with GDM, but relevancy is unclear given increasing use of other non-1st generation PI-based ART

Figure 2: Global burden of preterm birth in 2010



The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. Data Source: World Health Organization Map Production: Public Health Information and Geographic Information Systems (GIS) World Health Organization

© WHO 2012. All rights reserved.

Source: Blencowe et al National, regional and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Note: rates by country are available on the accompanying wall chart. Not applicable= non WHO Members State

n=19,585 (1990-2006) Pediatric Spectrum of HIV Disease, European Collaborative Study, National Study of HIV in Pregnancy and Childhood

Table 4. Pooled analysis of the association between antiretroviral therapy and preterm delivery (<37 weeks of gestation) using data from the Pediatric Spectrum of HIV Disease project, the European Collaborative Study and the National Study of HIV in Pregnancy and Childhood

	Univa	riable (adjusting fo	or study)*		Multivariable* (n = 10 110)	
	OR	95% CI	P value	AOR	95% CI	P value
Antiretroviral therapy						
Monotherapy	1.23	1.03-1.48	0.02	1.09	0.86-1.38	0.50
Dual therapy	1.00			1.00		
HAART	1.43	1.20-1.70	< 0.001	1.49	1.19-1.87	0.001
Study						
PSD	1.00			1.00		
ECS	0.92	0.79-1.06	0.24	1.03	0.79-1.35	0.82
NSHPC	0.76	0.65-0.89	< 0.001	0.92	0.69-1.22	0.55
Race/ethnicity						
White	1.00			1.00		
Black	0.95	0.85-1.08	0.45	1.41	1.14-1.75	0.002
Other/Hispanic	0.90	0.77-1.05	0.19	1.28	0.98-1.67	0.07
Region of birth						
Within study region	1.00			1.00		
Outside study region	0.77	0.69-0.86	< 0.001	0.71	0.59-0.87	0.001
Injecting drug use						
Non-IDU	1.00			1.00		
IDU	1.76	1.57-1.98	< 0.001	2.01	1.65-2.45	< 0.001
Clinical status**						
Asymptomatic or CD4 ≥200 cells/µl	1.00			1.00		
Symptomatic or CD4 <200 cells/ μ l	1.62	1.41-1.87	< 0.001	1.76	1.48-2.09	< 0.001
Year of birth/delivery						
Per year	1.00	1.00-1.02	0.22	1.01	0.98-1.04	0.53

*Adjusted for study site using random effects.

**Refers to maternal HIV-related symptoms in pregnancy in the PSD and NSHPC, and to CD4 count <200 cells/ μ l in the ECS.

n=19,585 (1990-2006) Pediatric Spectrum of HIV Disease, European Collaborative Study, National Study of HIV in Pregnancy and Childhood

 Table 4. Pooled analysis of the association between antiretroviral therapy and preterm delivery (<37 weeks of gestation) using data from the</th>

 Pediatric Spectrum of HIV Disease project, the European Collaborative Study and the National Study of HIV in Pregnancy and Childhood

	Univa	riable (adjusting fo	r study)*				
	OR	95% CI	P value	AOR	95% CI	<i>P</i> value	
Antiretroviral therapy							
Monotherapy	1.23	1.03–1.48	0.02	1.09	0.86-1.38	0.50	
Dual therapy HAART	1.00 1.43	1.20-1.70	< 0.001	<u>1.00</u> 1.49	1.19–1.87	0.001	
Study							
PSD	1.00			1.00			
ECS	0.92	0.79-1.06	0.24	1.03	0.79-1.35	0.82	
Race/ethnici aOR=1.49,					nation	0.55	
NSHPC Race/ethnici White Black Other/Hispan					nation		
NSHPC Race/ethnici White Black Other/Hispan Region of birth	onoth			narily)	nation	0.002	
NSHPC Race/ethnici White Black Other/Hispan Region of birth Within study region					0.59-0.87	0.002	
ASHPC Race/ethnici White Black Other/Hispan Region of birth Within study region Dutside study region	1.00	erapy (A	ZT prim	narily)		0.002 0.07	
ASHPC Race/ethnici White Black Other/Hispan Region of birth Within study region Dutside study region njecting drug use	1.00	erapy (A	ZT prim	narily)		0.002 0.07	
NSHPC Race/ethnici White Black Other/Hispan Region of birth Within study region Dutside study region njecting drug use Non-IDU	1.00 0.77	erapy (A	ZT prim	1.00 0.71		0.002 0.07	
ASHPC Race/ethnici White Black Dther/Hispan Region of birth Within study region Dutside study region njecting drug use Non-IDU DU	1.00 0.77 1.00	erapy (A 0.69–0.86	ZT prim <0.001	narily) 1.00 0.71 1.00	0.59–0.87	0.002 0.07 0.001	
ASHPC Race/ethnici White Black Dther/Hispan Region of birth Within study region Dutside study region Dutside study region Discling drug use Non-IDU DU Clinical status**	1.00 0.77 1.00	erapy (A 0.69–0.86	ZT prim <0.001	narily) 1.00 0.71 1.00	0.59–0.87	0.002 0.07 0.001	
NSHPC Race/ethnici Black Dther/Hispan Region of birth Within study region Dutside study region Injecting drug use Non-IDU DU Clinical status** Asymptomatic or CD4 ≥200 cells/µl	1.00 0.77 1.00 1.76	erapy (A 0.69–0.86	ZT prim <0.001	1.00 0.71 1.00 2.01	0.59–0.87	0.002 0.07 0.001	
NSHPC Race/ethnici White Black Other/Hispan	1.00 0.77 1.00 1.76 1.00	erapy (A 0.69-0.86 1.57-1.98	ZT prim <0.001 <0.001	1.00 0.71 1.00 2.01 1.00	0.59–0.87 1.65–2.45	0.002 0.07 0.001 <0.001	

*Adjusted for study site using random effects.

**Refers to maternal HIV-related symptoms in pregnancy in the PSD and NSHPC, and to CD4 count <200 cells/ μ l in the ECS.

			Continued HAART vs Others (N = 8725)	HAART Initiation vs ZDV Initiation (N = 4653)	
Risk Factor	Number of PTD Unadjusted OR (%) (95% Cl) ^a		Adjusted OR (95% CI) ^b	Adjusted OR (95% CI) ^c	
Marital status					
Single/widowed/divorced	1861/7813 (23.8)	1.4 (1.2–1.6)	1.4 (1.2–1.7)	1.3 (.9–1.9)	
Married	176/955 (18.4)				
Educational status ^d					
None or primary	412/1540 (26.8)	1.2 (1.1–1.4)	1.2 (1.0–1.3)	.8 (.7–1.1)	
Secondary or tertiary	1583/6992 (22.6)				
History of past adverse outcome ^e					
Yes	359/1125 (31.9)	1.7 (1.5–2.0)	1.6 (1.4–1.9)	1.4 (1.1–1.8)	
No	901/4167 (21.6)				
Smoking					
Yes	52/158 (32.9)	1.6 (1.1–2.2)	1.4 (1.0–2.1)	1.8 (1.0–3.0)	
No or unknown	2092/8907 (23.5)				
Maternal hypertension in pregnancy ^f					
Yes	405/1516 (26.7)	1.3 (1.2–1.5)	1.4 (1.2–1.5)	1.2 (.9–1.4)	
No	1512/7087 (21.3)				
Anemia in pregnancy ^g					
Yes	682/3004 (22.7)	5.8 (4.7-7.2)		4.1 (3.0–5.7)	
No	102/2128 (4.8)				
CD4 ⁺ cell count ≤200 µL					
Yes	110/549 (20.0)	1.1 (.9–1.3)	1.1 (.9–1.4)	1.0 (.7–1.3)	
No	714/3768 (18.9)				
Unknown	1320/4748 (27.8)				
Continued HAART in pregnancy ^b					
Continued HAART	543/2050 (26.5)	1.2 (1.1–1.4)	1.2 (1.1–1.4)		
All others	1515/6676 (22.7)				
Initiated HAART in pregnancy ^c					
Initiated HAART	177/892 (19.8)	1.5 (1.2–1.8)		1.4 (1.2–1.8)	
Initiated ZDV	533/3762 (14.2)				

Table 3. Univariate and Multivariate Odds Ratios for Preterm Delivery Among HIV-Infected Women

Chen J et al . JID. 2012

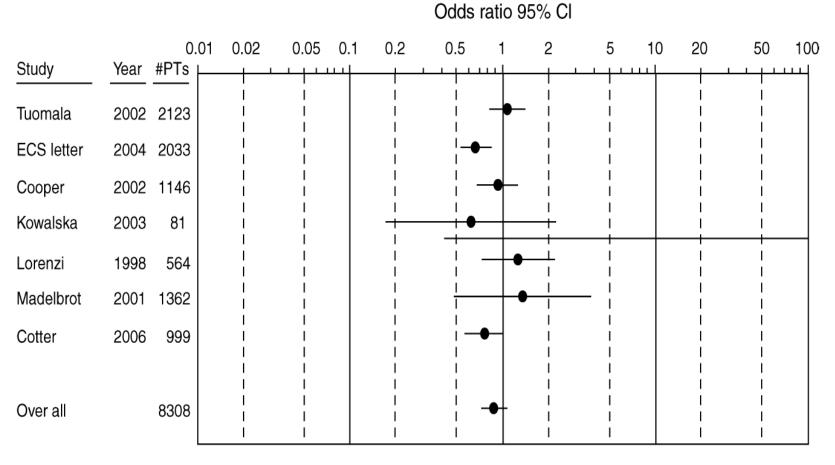
			Continued HAART vs Others (N = 8725)	HAART Initiation vs ZDV Initiation (N = 4653)	
Risk Factor	Number of PTD Unadjusted O (%) (95% Cl) ^a		Adjusted OR (95% CI) ^b	Adjusted OR (95% CI) ^c	
Marital status					
Single/widowed/divorced	1861/7813 (23.8)	1.4 (1.2–1.6)	1.4 (1.2–1.7)	1.3 (.9–1.9)	
Married	176/955 (18.4)				
Educational status ^d					
None or primary	412/1540 (26.8)	1.2 (1.1–1.4)	1.2 (1.0–1.3)	.8 (.7–1.1)	
Secondary or tertiary	1583/6992 (22.6)				
History of past adverse outcome ^e					
Yes	359/1125 (31.9)	1.7 (1.5–2.0)	1.6 (1.4–1.9)	1.4 (1.1–1.8)	
No	901/4167 (21.6)				
Smoking					
Yes	52/158 (32.9)	1.6 (1.1–2.2)	1.4 (1.0–2.1)	1.8 (1.0–3.0)	
No or unknown Matemal hyperte aOR=1.4		1 2_1 8 for	r combinatio	h	
Maternal hyperte	+, 95 /0 CI.	1.2-1.0 10			
Yes ART vs	AZT mono	otherany		9–1.4)	
No		sinorapy			
Anemia in pregnancy ^g					
Yes	682/3004 (22.7)	5.8 (4.7–7.2)		4.1 (3.0–5.7)	
No	102/2128 (4.8)				
CD4⁺ cell count ≤200 µL					
Yes	110/549 (20.0)	1.1 (.9–1.3)	1.1 (.9–1.4)	1.0 (.7–1.3)	
No	714/3768 (18.9)				
Unknown	1320/4748 (27.8)				
Continued HAART in pregnancy ^b					
Continued HAART	543/2050 (26.5)	1.2 (1.1–1.4)	1.2 (1.1–1.4)		
All others	1515/6676 (22.7)				
Initiated HAART in pregnancy ^c					
Initiated HAART	177/892 (19.8)	1.5 (1.2–1.8)		1.4 (1.2–1.8)	
milialeu mAAnn		1.0 (1.2 1.0)			

Table 3. Univariate and Multivariate Odds Ratios for Preterm Delivery Among HIV-Infected Women

Chen J et al . JID. 2012

		Premature		Bivariable Analysis (n = 11 377)			Multivariable Analysis $(n = 10 402)$		
Therapy Type	Total No.	Births, %	OR	95% CI	P	aOR	95% CI	Р	
ARV therapy					<.001			<.001	
Monotherapy	2975	9.6	1			1			
Dual therapy	1664	11.3	1.27	(0.99–1.63)		1.24	(0.96-1.60)		
HAART	6738	14.7	1.92	(1.59–2.30)		1.69	(1.38–2.07)		
Initiation of ARV					<.001			.001	
Before conception	3893	15.9	1.66	(1.43–1.93)		1.31	(1.11–1.55)		
During pregnancy	7413	11.2	1			1			
Missing	71	22.5							
Geographic origin					.03			.12	
Mainland France	2599	12.9	1			1			
Sub-Saharan Africa	6661	12.3	0.92	(0.77-1.11)		1.00	(0.82-1.23)		
Other	1999	14.9	1.21	(0.96–1.52)		1.24	(0.97–1.58)		
Missing	118	13.6							
Maternal age, years					<.001			.05	
<25	1398	11.4	1			1			
25–34	6842	11.9	1.12	(0.88–1.41)		0.91	(0.72–1.16)		
≥35	3116	15.5	1.67	(1.29-2.15)		1.12	(0.86-1.47)		
Missing	21	38.1							
Intravenous drug use (past or active)					.001			<.001	
Yes	661	17.4	1.60	(1.20-2.13)		1.78	(1.30-2.45)		
No	10 568	12.6	1			1			
Missing	148	18.2							
CD4 cell count, cells/mL					<.001			.001	
≥500	4483	11.5	1			1			
350–500	2787	12.2	1.12	(0.93-1.34)		1.05	(0.87-1.27)		
200–350	2313	13.5	1.26	(1.04–1.52)		1.17	(0.96-1.43)		
<200	1069	16.6	1.74	(1.26-2.22)		1.64	(1.28-2.11)		
Missing	725	17.1							

Table 2. Association Between Antiretroviral Therapy and Preterm Birth (Overall Study)

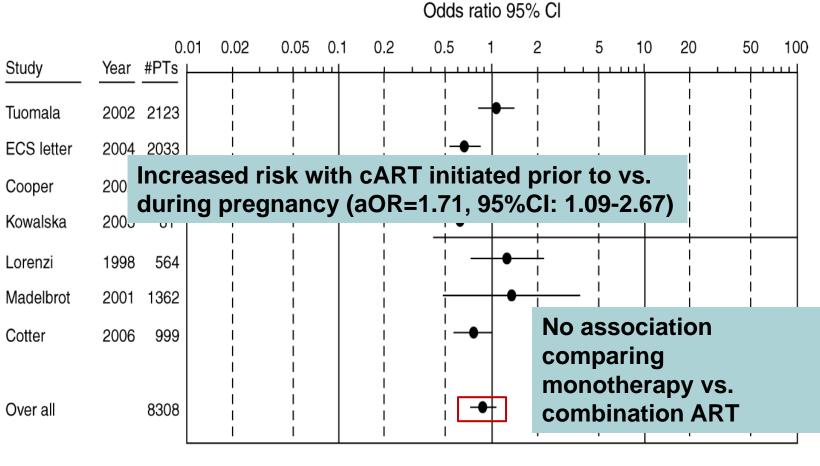

Sibiude J et al. CID 2012

		Premature		Bivariable Analys $(n = 11 377)$	sis	N	$\begin{array}{l} \text{1ultivariable Analy}\\ \text{(n = 10 402)} \end{array}$	ysis
Therapy Type	Total No.	Births, %	OR	95% CI	Р	aOR	95% CI	Р
ARV therapy					<.001			<.001
Monotherapy	2975	9.6	1			1		
Dual therapy	1664	11.3	1.27	(0.99–1.63)		1.24	(0.96-1.60)	
HAART	6738	14.7	1.92	(1.59–2.30)		1.69	(1.38–2.07)	
Initiation of ARV					<.001			.001
Before conception	3893	15.9	1.66	(1.43–1.93)		1.31	(1.11–1.55)	
During pregnancy	7413	11.2	1			1		
Missing	71	22.5						
Geographic origin					.03			.12
Mainland France	2599	12.9	1			1		
Sub-Saharan Africa	6661	12.3	0.92	(0.77-1.11)		1.00	(0.82-1.23)	
Other	1999	14.9	1.21	(0.96–1.52)		1.24	(0.97–1.58)	
Missing	aOR=1.69, 95		1 30	2 07 for	r com	hing	ation	
Maternal age, years	3000 = 1.03, 30		1.30	2.07 101	COII			.05
<25	ART vs. AZT	monot	hera	inv				
25–34				۲ ۹				
≥35	3116	15.5	1.67			1 1 0		
Missing				(1.29-2.15)		1.12	(0.86-1.47)	
	21	38.1		(1.29–2.15)		1.12	(0.86–1.47)	
Intravenous drug use (pas		38.1		(1.29–2.15)	.001	1.12	(0.86–1.47)	<.001
Intravenous drug use (pas Yes		38.1 17.4	1.60	(1.29–2.15)	.001	1.12	(0.86–1.47) (1.30–2.45)	<.001
. .	st or active)				.001			<.001
Yes	st or active) 661	17.4	1.60		.001	1.78		<.001
Yes No	st or active) 661 10 568	17.4 12.6	1.60		.001	1.78		<.001
Yes No Missing	st or active) 661 10 568	17.4 12.6	1.60			1.78		
Yes No Missing CD4 cell count, cells/mL	st or active) 661 10 568 148	17.4 12.6 18.2	1.60 1			1.78 1		
Yes No Missing CD4 cell count, cells/mL ≥500	st or active) 661 10 568 148 4483	17.4 12.6 18.2 11.5	1.60 1 1	(1.20–2.13)		1.78 1 1	(1.30–2.45)	
Yes No Missing CD4 cell count, cells/mL ≥500 350–500	st or active) 661 10 568 148 4483 2787	17.4 12.6 18.2 11.5 12.2	1.60 1 1 1.12	(1.20–2.13) (0.93–1.34)		1.78 1 1 1.05	(1.30–2.45) (0.87–1.27)	

Table 2. Association Between Antiretroviral Therapy and Preterm Birth (Overall Study)

Sibiude J et al. CID 2012

(b)



Favors monotherapy

Favors combination

Kourtis et al. AIDS. 2007

(b)

Favors monotherapy

Favors combination

Kourtis et al. AIDS. 2007

			Continued HAART vs Others (N = 8725)	HAART Initiation vs ZDV Initiation (N = 4653)
Risk Factor	Number of PTD (%)	Unadjusted OR (95% CI) ^a	Adjusted OR (95% CI) ^b	Adjusted OR (95% CI) ^c
Marital status				
Single/widowed/divorced	1861/7813 (23.8)	1.4 (1.2–1.6)	1.4 (1.2–1.7)	1.3 (.9–1.9)
Married	176/955 (18.4)			
Educational status ^d				
None or primary	412/1540 (26.8)	1.2 (1.1–1.4)	1.2 (1.0–1.3)	.8 (.7–1.1)
Secondary or tertiary	1583/6992 (22.6)			
History of past adverse outcome ^e				
Yes	359/1125 (31.9)	1.7 (1.5–2.0)	1.6 (1.4–1.9)	1.4 (1.1–1.8)
No	901/4167 (21.6)			
Smoking				
Yes	52/158 (32.9)	1.6 (1.1–2.2)	1.4 (1.0–2.1)	1.8 (1.0–3.0)
No or unknown				
Maternal hypertene Increas	sed risk with	CART initi	ated prior to v	S.
Yes during	prograncy (2OP = 1.2	95%CI: 1.1-1.4)	1.2 (.9–1.4)
No	pregnancy (aun=1.2, 3	9578CI. 1.1-1.4)	
Anemia in pregnancy ^g				
Yes	682/3004 (22.7)	5.8 (4.7-7.2)		4.1 (3.0–5.7)
No	102/2128 (4.8)			
CD4 ⁺ cell count ≤200 μL				
Yes	110/549 (20.0)	1.1 (.9–1.3)	1.1 (.9–1.4)	1.0 (.7–1.3)
No	714/3768 (18.9)			
Unknown	1320/4748 (27.8)			
Continued HAART in pregnancy ^b				
Continued HAART	543/2050 (26.5)	1.2 (1.1–1.4)	1.2 (1.1–1.4)	
All others	1515/6676 (22.7)			
Initiated HAART in pregnancy ^c				
Initiated HAART	177/892 (19.8)	1.5 (1.2–1.8)		1.4 (1.2–1.8)
Initiated ZDV	533/3762 (14.2)			

Table 3. Univariate and Multivariate Odds Ratios for Preterm Delivery Among HIV-Infected Women

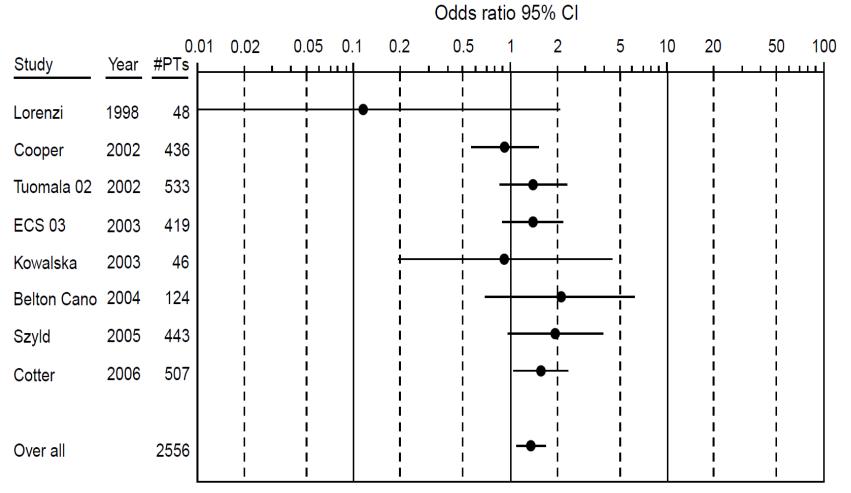
Chen J et al . JID. 2012

		Premature		Bivariable Analys $(n = 11 377)$	sis	N	lultivariable Anal (n = 10 402)	ysis
Therapy Type	Total No.	Births, %	OR	95% CI	Р	aOR	95% CI	Р
ARV therapy					<.001			<.001
Monotherapy	2975	9.6	1			1		
Dual therapy	1664	11.3	1.27	(0.99–1.63)		1.24	(0.96-1.60)	
HAART	6738	14.7	1.92	(1.59–2.30)		1.69	(1.38–2.07)	
Initiation of ARV					<.001			.001
Before conception	3893	15.9	1.66	(1.43-1.93)		1.31	(1.11–1.55)	
During pregnancy	7413	11.2	1			1		
Missing	71	22.5						
Geographic origin					.03			.12
Mainland France	2599	12.9	1			1		
Sub-Saharan Africa	6661	12.3	0.92	(0.77-1.11)		1.00	(0.82-1.23)	
Other Incrosod	riokwi	th a A DT		isted pri	or to y	<i>(</i>)	-1.58)	
Missing Increased				-				
Maternal age, ye during pre	egnancy	v (aOR=	1.31.	95%CI:	1.11-1	1.55)		.05
<25	1000	11.4	,					
25–34	6842	11.9	1.12	(0.88-1.41)		0.91	(0.72-1.16)	
≥35	3116	15.5	1.67	(1.29-2.15)		1.12	(0.86-1.47)	
Missing	21	38.1						
Intravenous drug use (past or active)					.001			<.001
Yes	661	17.4	1.60	(1.20-2.13)		1.78	(1.30–2.45)	
No	10 568	12.6	1			1		
Missing	148	18.2						
CD4 cell count, cells/mL					<.001			.001
≥500	4483	11.5	1			1		
350–500	2787	12.2	1.12	(0.93–1.34)		1.05	(0.87-1.27)	
200–350	2313	13.5	1.26	(1.04–1.52)		1.17	(0.96–1.43)	
<200	1069	16.6	1.74	(1.26-2.22)		1.64	(1.28-2.11)	
Missing	725	17.1						

Table 2. Association Between Antiretroviral Therapy and Preterm Birth (Overall Study)

Sibiude J et al. CID 2012

U.S. PHACS SMARTT Cohort (n=1869)

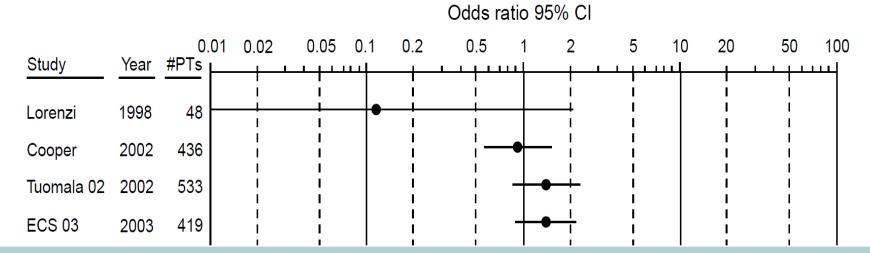

Table 3. Associations of First Trimester Exposures to Combination Antiretroviral (ARV) Regimens Including Protease Inhibitors (PIs), Nonnucleoside Reverse-Transcriptase Inhibitors (NNRTIs), and \geq 3 Nucleoside Reverse-Transcriptase Inhibitors (NRTIs) With Preterm Birth and Small for Gestational Age (SGA)

Outcome First Trimester	Unadjusted Mo	dels	Adjusted Models ^a			
Outcome, First-Trimester Combination ART Regimen	OR (95% CI)	Р	Adjusted OR (95% CI)	Р		
Preterm birth						
Contained PI	1.43 (1.11–1.85)	.006	1.55 (1.16–2.07)	.003		
Contained NNRTI	1.26 (.77–2.06)	.37	1.34 (.78–2.30)	.28		
Contained ≥3 NRTIs	0.75 (.35–1.60)	.45	0.84 (.37–1.91)	.68		
None in first trimester	1.00 (reference)		1.00 (reference)			
Spontaneous preterm birth						
Contained PI	1.40 (1.00–1.95)	.048	1.59 (1.10–2.30)	.014		
Contained NNRTI	1.25 (.66–2.36)	.50	1.42 (.72–2.81)	.31		
Contained ≥3 NRTIs	0.68 (.24–1.92)	.47	0.66 (.20-2.18)	.49		
None in first trimester	1 00 (reference)		1 00 (reference)			
SGA For both overal	I preterm birth and	d spontane	ous preterm birth, PI-			
	-	-	iated with preterm bir	'th		
Contained NNK II	1.19(.60-2.37)	.62	1.17 (.54–2.54)	./U		
Contained ≥3 NRTIs	1.05 (.41–2.69)	.92	0.99 (.34–2.86)	.99		
None in first trimester	1.00 (reference)		1.00 (reference)			

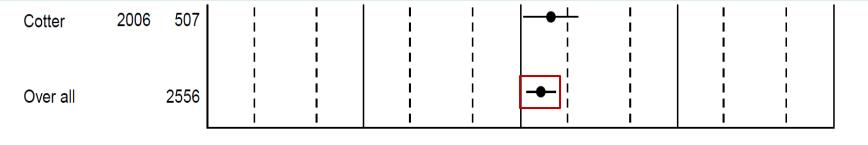
PI exposure					
Cotter et al (2006)	US	Registry	1337	PI-based cART vs. non PI- based cART	Increased risk preterm birth (OR=1.8, 95%CI: 1.1-3.0) for PI vs. non PI-based
Schulte et al (2007)	US (PSD)	Registry	8793	PI-based cART vs. dual therapy ART	Increased risk preterm birth (OR=1.21, 95%CI: 1.04-1.40)
Grosch-Woerner et al (2008)	Germany	Cohort	183	PI-based cART vs. AZT monotherapy	Increased risk preterm birth (OR=3.4, 95%CI: 1.1-10.2) with PI-based cART
Szyld et al (2006)	Latin America (NISDI)	Cohort	681	PI- vs. NNRTI- vs. 1-2 NRTI- based ART	No increased risk of preterm birth (OR=1.1, 95%CI: 0.5-2.8 for PI; OR=0.6, 95%CI: 0.2-1.7 for NNRTI)
Shapiro et al (2010)	Botswana	RCT	709	PI- vs. triple NRTI- vs NNRTI- based ART	Increased rate preterm birth in PI arm (23% vs. 15% vs. 10%)
Watts et al (2013)	US (PHACS)	Cohort	1869	1 st trimester PI vs. NNRTI vs. <u>></u> 3 NRTIs-based ART	Increased risk preterm birth with 1 st trimester PI compared to no 1 st trimester ARV use (OR=1.55, 95%CI: 1.16-2.07)
Kourtis et al (AIDS 2007)	Multiple	Meta analysis	11,224	PI-based vs. non-PI based	Increased risk with PI vs. non-PI based cART (aOR=1.35, 95%CI: 1.08-1.70)
Mesfin et al (Reproduc Health 2016)	Multiple	Meta analysis	23.490	PI-based vs. non PI-based	Increased risk with PI vs. non PI-based cART (aOR=1.32, 95%CI: 1.04-1.59)
Fowler et al (2016 NEJM)	Multiple PROMISE	RCT	3490	AZT-based ART (AZT/3TC/Lop/r) vs. AZT monotherapy	Increased risk AZT/3TC/Lop/r vs. AZT monotherapy (20.5% vs. 13.1%, p<0.001)
Koss et al (JAIDS 2014)	Uganda PROMOTE	RCT	356	Lop/r-based ART vs. EFV- based ART	No assoc with preterm birth when comparing Lop/r to EFV-based ART (OR=1.12, 95%CI: 0.63-2.00)
Zash et al (CROI 2017)	Botswana	Observational	5087	1 st trimester TDF/FTC/Lop/r vs. TDF/FTC/EFV 1 st trimester AZT/3TC/Lop/r vs. TDF/FTC/EFV	Increased risk for preterm and very preterm (<32 wks) for AZT/3TC/Lop/r vs. TDF/FTC/EFV; increased risk of preterm birth comparing TDF/FTC/Lop/r vs. TDF/FTC/EFV did not reach statistical significance but trended in same direction

PI exposure					
Cotter et al (2006)	US	Registry	1337	PI-based cART vs. non PI- based cART	Increased risk preterm birth (OR=1.8, 95%CI: 1.1-3.0) for PI vs. non PI-based
Schulte et al (2007)	US (PSD)	Registry	8793	PI-based cART vs. dual therapy ART	Increased risk preterm birth (OR=1.21, 95%CI: 1.04-1.40)
Grosch-Woerner et al (2008)	Germany	Cohort	183	PI-based cART vs. AZT monotherapy	Increased risk preterm birth (OR=3.4, 95%CI: 1.1-10.2) with PI-based cART
Szyld et al (2006)	Latin America (NISDI)	Cohort	681	PI- vs. NNRTI- vs. 1-2 NRTI- based ART	No increased risk of preterm birth (OR=1.1, 95%CI: 0.5-2.8 for PI; OR=0.6, 95%CI: 0.2-1.7 for NNRTI)
Shapiro et al (2010)	Botswana	RCT	709	PI- vs. triple NRTI- vs NNRTI- based ART	Increased rate preterm birth in PI arm (23% vs. 15% vs. 10%)
Watts et al (2013)	US (PHACS)	Cohort	1869	1 st trimester PI vs. NNRTI vs. <u>></u> 3 NRTIs-based ART	Increased risk preterm birth with 1 st trimester PI compared to no 1 st trimester ARV use (OR=1.55, 95%CI: 1.16-2.07)
Kourtis et al (AIDS 2007)	Multiple	Meta analysis	11,224	PI-based vs. non-PI based	Increased risk with PI vs. non-PI based cART (aOR=1.35, 95%CI: 1.08-1.70)
Mesfin et al (Reproduc Health 2016)	Multiple	Meta analysis	23.490	PI-based vs. non PI-based	Increased risk with PI vs. non PI-based cART (aOR=1.32, 95%CI: 1.04-1.59)
Fowler et al (2016 NEJM)	Multiple PROMISE	RCT	3490	AZT-based ART (AZT/3TC/Lop/r) vs. AZT monotherapy	Increased risk AZT/3TC/Lop/r vs. AZT monotherapy (20.5% vs. 13.1%, p<0.001)
Koss et al (JAIDS 2014)	Uganda PROMOTE	RCT	356	Lop/r-based ART vs. EFV- based ART	No assoc with preterm birth when comparing Lop/r to EFV-based ART (OR=1.12, 95%CI: 0.63-2.00)
Zash et al (CROI 2017)	Botswana	Observational	5087	TDF/FTC/Lop/r vs. TDF/FTC/EFV AZT/3TC/Lop/r vs. TDF/FTC/EFV	Increased risk for preterm and very preterm (<32 wks) for AZT/3TC/Lop/r vs. TDF/FTC/EFV; increased risk of preterm birth comparing TDF/FTC/Lop/r vs. TDF/FTC/EFV did not reach statistical significance but trended in same direction

Meta-analysis (n=2556)



Favors PI combination


Favors non-PI combination

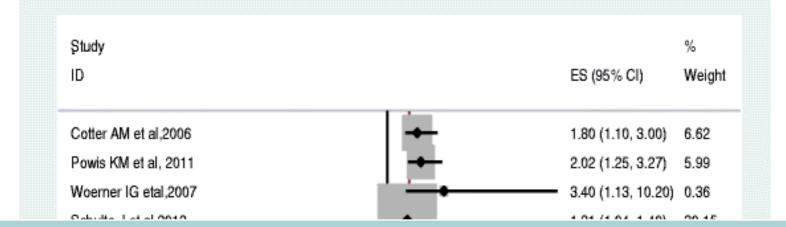
Kourtis et al. AIDS. 2007

Meta-analysis (n=2556)

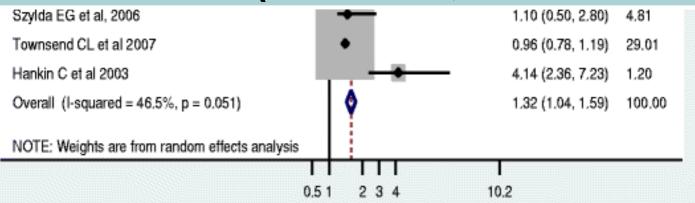
Increased risk with PI vs. non-PI based combination ART (aOR=1.35, 95%CI: 1.08-1.70)

Favors PI combination

Favors non-PI combination


Kourtis et al. AIDS. 2007

Meta-analysis


Study		%
ID	ES (95% CI)	Weight
Cotter AM et al,2006	1.80 (1.10, 3.00)	6.62
Powis KM et al, 2011	2.02 (1.25, 3.27)	5.99
Woerner IG etal,2007	3.40 (1.13, 10.20)	0.36
Schulte J et al,2012	1.21 (1.04, 1.40)	30.15
Watts DH et al, 2013	1.49 (0.83, 2.67)	6.97
Tuomala RET et al, 2002	1.80 (0.94, 3.43)	4.19
Patel K et al,2011 +	1.29 (0.77, 2.15)	10.72
Szylda EG et al, 2006	1.10 (0.50, 2.80)	4.81
Townsend CL et al 2007 •	0.96 (0.78, 1.19)	29.01
Hankin C et al 2003	4.14 (2.36, 7.23)	1.20
Overall (I-squared = 46.5%, p = 0.051)	1.32 (1.04, 1.59)	100.00
NOTE: Weights are from random effects analysis		
11-111		

Mesfin Y et al. Reprod Health. 2016

Meta-analysis

Increased risk with PI vs. non-PI based combination ART (aOR=1.32, 95%CI: 1.04-1.59)

Table 3. Maternal Safety and Pregnancy Outcomes, including Infant Deaths, through Week 1 Post Partum.*									
Outcome	Antepar	tum Randomizatio	n Group	P Value					
	ZDV Alone	ZDV-Based ART	TDF-Based ART	ZDV Alone vs. ZDV-Based ART	ZDV Alone vs. TDF-Based ART	ZDV-Based ART vs. TDF- Based ART			
	numb	er/total number (pe	rcent)						
Maternal adverse events									
Periods 1 and 2: ZDV alone vs. ZDV-based ART									
Any grade ≥2 adverse event†	261/1510 (17.3)	318/1505 (21.1)	_	0.008					
Grade ≥2 abnormal blood chemical value	19/1510 (1.3)	88/1505 (5.8)	_	<0.001					
Period 2 only: all three groups									
Any grade ≥2 adverse event†	59/393 (15.0)	61/385 (15.8)	60/380 (15.8)		0.77	>0.99			
Grade ≥2 abnormal blood chemical value	3/392 (0.8)	18/385 (4.7)	11/380 (2.9)		0.03	0.26			
Adverse pregnancy outcomes									
Periods 1 and 2: ZDV alone vs. ZDV-based ART									
Any adverse outcome‡	389/1414 (27.5)	563/1407 (40.0)		<0.001					
Low birth weight: <2500 g	161/1347 (12.0)	306/1332 (23.0)	—	< 0.001					
Preterm delivery: <37 wk	185/1411 (13.1)	288/1406 (20.5)		<0.001					
Period 2: all three groups									
Any adverse outcome‡	91/334 (27.2)	123/328 (37.5)	111/320 (34.7)		0.04	0.46			
Low birth weight: <2500 g	28/315 (8.9)	65/319 (20.4)	51/301 (16.9)		0.004	0.30			
Preterm delivery: <37 wk	46/341 (13.5)	68/346 (19.7)	62/335 (18.5)		0.09	0.77			

Fowler et al. NEJM. 2016.

Table 3. Maternal Safety and Pregnancy Outcomes, including Infant Deaths, through Week 1 Post Partum.*									
Antepar	tum Randomizatio	n Group		P Value					
ZDV ZDV-Based Alone ART		TDF-Based ART	ZDV Alone vs. ZDV-Based ART	ZDV Alone vs. TDF-Based ART	ZDV-Based ART vs. TDF Based ART				
numb	er/total number (pe	rcent)							
261/1510 (17.3)	318/1505 (21.1)		0.008						
19/1510 (1.3)	88/1505 (5.8)	_	<0.001						
59/393 (15.0)	61/385 (15.8)	60/380 (15.8)		0.77	>0.99				
3/392 (0.8)	18/385 (4.7)	11/380 (2.9)		0.03	0.26				
389/1414 (27.5)	563/1407 (40.0)		< 0.001						
161/1347 (12.0)	306/1332 (23.0)		< 0.001						
185/1411 (13.1)	288/1406 (20.5)		<0.001						
91/334 (27.2)	123/328 (37.5)	111/320 (34.7)		0.04	0.46				
28/315 (8.9)	65/319 (20.4)	51/301 (16.9)		0.004	0.30				
46/341 (13.5)	68/346 (19.7)	62/335 (18.5)		0.09	0.77				
	Antepar ZDV Alone numb 261/1510 (17.3) 19/1510 (1.3) 59/393 (15.0) 3/392 (0.8) 3/392 (0.8) 389/1414 (27.5) 161/1347 (12.0) 185/1411 (13.1) 91/334 (27.2) 28/315 (8.9)	Antepartum Randomization ZDV ZDV-Based ART Alone ART number/total number (pe 261/1510 (17.3) 318/1505 (21.1) (1.3) 19/1510 (1.3) 388/1505 (5.8) 59/393 (15.0) 61/385 (15.8) (3/392 (0.8) 389/1414 (27.5) 563/1407 (40.0) (40.0) 161/1347 (12.0) 306/1332 (23.0) (20.4) 91/334 (27.2) 123/328 (37.5) (28/315 (8.9)	Antepartum Randomization Group ZDV Alone ZDV-Based ART TDF-Based ART 10/1510 (17.3) 318/1505 (21.1) — 19/1510 (1.3) 88/1505 (5.8) — 59/393 (15.0) 61/385 (15.8) 60/380 (15.8) 3/392 (0.8) 18/385 (4.7) 11/380 (2.9) 389/1414 (27.5) 563/1407 (40.0) — 161/1347 (12.0) 306/1332 (23.0) — 185/1411 (13.1) 288/1406 (20.5) — 91/334 (27.2) 123/328 (37.5) 111/320 (34.7) 28/315 (8.9) 65/319 (20.4) 51/301 (16.9)	Antepartum Randomization Group ZDV ZDV-Based TDF-Based ZDV-Based Alone ART TDF-Based ART number/total number (percent) ART ART 261/1510 (17.3) 318/1505 (21.1) — 0.008 19/1510 (1.3) 88/1505 (5.8) — <0.001	Antepartum Randomization Group P Value ZDV ZDV-Based ART TDF-Based ART ZDV-Based ART TDF-Based ART ZDV-Based ART ZDV-Based ART ZDV-Based ART ZDV-Based ART TDF-Based ART ZDV-Based ART TDF-Based ART ZDV-Based ART TDF-Based ART ZDV-Based ART TDF-Based ART TDF-Based ART				

Fowler et al. NEJM. 2016.

Outcome	Antepar	tum Randomizatio	n Group		P Value	
	ZDV Alone	ZDV-Based ART	TDF-Based ART	ZDV Alone vs. ZDV-Based ART	ZDV Alone vs. TDF-Based ART	ZDV-Based ART vs. TDF Based ART
	numb	er/total number (pe	rcent)			
Maternal adverse events						
Periods 1 and 2: ZDV alone vs. ZDV-based ART						
Any grade ≥2 adverse event†	261/1510 (17.3)	318/1505 (21.1)	_	0.008		
Grade ≥2 abnormal blood chemical value	19/1510 (1.3)	88/1505 (5.8)		<0.001		
Period 2 only: all three groups						
Any grade ≥2 adverse event†	59/393 (15.0)	61/385 (15.8)	60/380 (15.8)		0.77	>0.99
Grade ≥2 abnormal blood chemical value	3/392 (0.8)	18/385 (4.7)	11/380 (2.9)		0.03	0.26
Adverse pregnancy outcomes						
Periods 1 and 2: ZDV alone vs. ZDV-based ART						
Any adverse outcome <u></u> ;	389/1414 (27.5)	563/1407 (40.0)		< 0.001		
Low birth weight: <2500 g	161/1347 (12.0)	306/1332 (23.0)	—	< 0.001		
Preterm delivery: <37 wk	185/1411 (13.1)	288/1406 (20.5)	—	<0.001		
Period 2: all three groups						
Any adverse outcome <u>‡</u>	91/334 (27.2)	123/328 (37.5)	111/320 (34.7)		0.04	0.46
Low birth weight: <2500 g	28/315 (8.9)	65/319 (20.4)	51/301 (16.9)		0.004	0.30
Preterm delivery: <37 wk	46/341 (13.5)	68/346 (19.7)	62/335 (18.5)		0.09	0.77

Fowler et al. NEJM. 2016.

Periods 1 and 2: ZDV alone vs. ZDV-based ART Any severe adverse outcome§ 83/1399 (5.9) 99/1385 (7.1) — 0.22 Very preterm delivery: <34 wk 37/1411 (2.6) 44/1406 (3.1) — 0.43	
Very preterm delivery: <34 wk 37/1411 (2.6) 44/1406 (3.1) — 0.43	
Infant deaths through wk 1 28/1432 (2.0) 17/1419 (1.2) — 0.13	
Period 2 only: all three groups	
Any severe adverse outcome∬ 22/329 (6.7) 14/322 (4.3) 29/314 (9.2) 0.25	0.02
Very preterm delivery: <34 wk 11/341 (3.2) 9/346 (2.6) 20/335 (6.0) 0.10	0.04
Infant deaths through wk 1 11/349 (3.2) 2/346 (0.6) 15/341 (4.4) 0.43	0.001

Adjusted Relative Risk of Preterm Delivery in Women on combination ART prior to conception in Botswana

	TDF FTC EFV (n=2503)	TDF FTC NVP (n=775)	AZT 3TC NVP (n=1403)	TDF FTC Lop/r (n=237)	AZT 3TC Lop/r (n=169)
Preterm (<37 wks)	REF	0.9 (0.8-1.1)	1.2 (1.0 – 1.3)	1.1 (0.9-1.4)	1.4 (1.1-1.8)
Very Preterm (<32 wks)	REF	1.2 (0.8-1.8)	1.4 (1.1-2.0)	1.4 (0.8-2.5)	2.2 (1.3-3.8)

Adjusted for maternal age, education, gravida

Zash R et al. CROI 2017 Seattle. Abstract #25.

Adjusted Relative Risk of Preterm Delivery in Women on combination ART prior to conception in Botswana

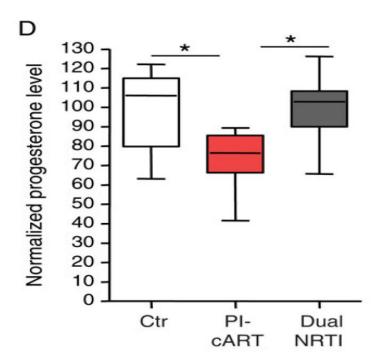
	TDF FTC EFV (n=2503)	TDF FTC NVP (n=775)	AZT 3TC NVP (n=1403)	TDF FTC Lop/r (n=237)	AZT 3TC Lop/r (n=169)
Preterm (<37 wks)	REF (22%)	0.9 (0.8-1.1) (19%)	1.2 (1.0 – 1.3) (25%)	1.1 (0.9-1.4) (24%)	1.4 (1.1-1.8) (30%)
Very Preterm (<32 wks)	REF (4.1%)	1.2 (0.8-1.8) (5.2%)	1.4 (1.1-2.0) (5.9%)	1.4 (0.8-2.5) (5.2%)	2.2 (1.3-3.8) (9.0%)

Adjusted for maternal age, education, gravida

5.2% VPTD 9.0% VPTD

PROMISE 6.0% VPTD 2.6% VPTD

Zash R et al. CROI 2017 Seattle. Abstract #25.

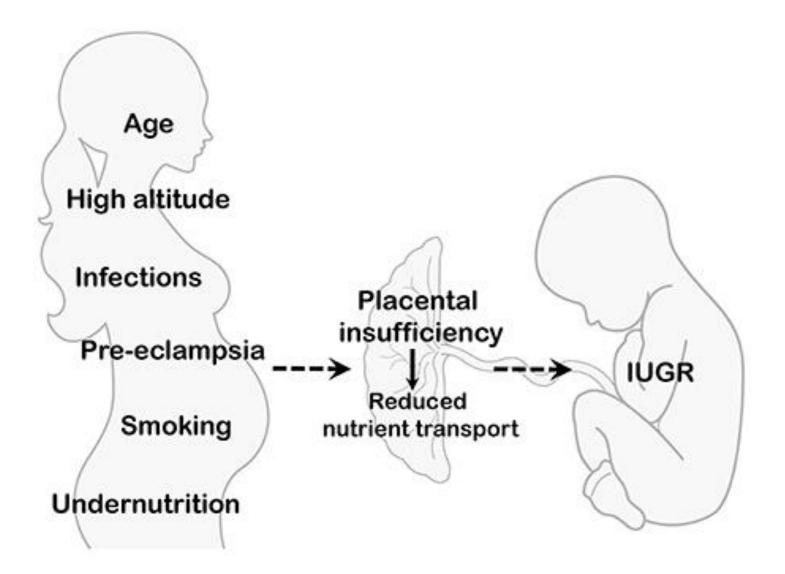

MAJOR ARTICLE

HIV Protease Inhibitor Use During Pregnancy Is Associated With Decreased Progesterone Levels, Suggesting a Potential Mechanism Contributing to Fetal Growth Restriction

Eszter Papp,¹ Hakimeh Mohammadi,¹ Mona R. Loutfy,^{2,3} Mark H. Yudin,^{3,4} Kellie E. Murphy,^{3,5} Sharon L. Walmsley,^{1,3} Rajiv Shah,⁴ Jay MacGillivray,⁴ Michael Silverman,^{3,6} and Lena Serghides^{1,2}

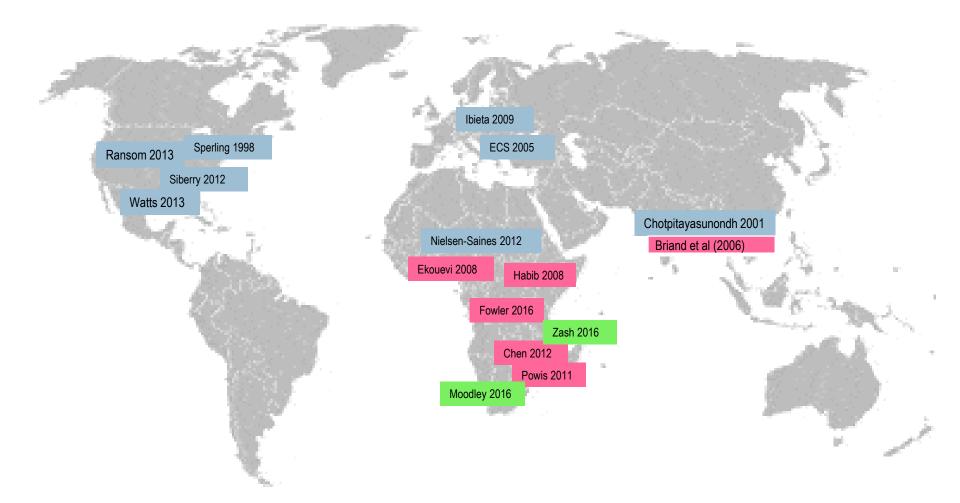
¹Toronto General Research Institute, University Health Network, ²Women's College Research Institute, Women's College Hospital, ³University of Toronto, ⁴St. Michael's Hospital, and ⁵Mount Sinai Hospital, Toronto; and ⁶Lakeridge Health, Rouge Valley Hospital, Ajax, Canada

In pregnant mice, PI-based ART resulted in significantly lower progesterone levels


Progesterone's Role in Preterm Birth

- Implantation and placental formation early in pregnancy
- Maintains uterine quiescence later in pregnancy
- Anti-inflammatory effects which may improve tolerance of fetus allograft
- Supplementation in general population may reduce risk of preterm delivery in those with prior preterm delivery

Mendelson CR et al. Mol Endocrinol. 2009 Lachelin GCL et al. BJOG. 2009. Johnson JW et al. NEJM. 1975. Hassan SS et al. Ultrasound Obstet Gynecol. 2011

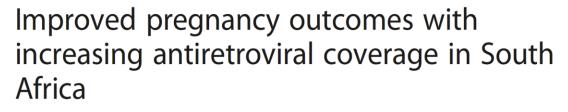

Preterm Birth and HIV/ART

- Early studies observed signals for increased preterm birth with use of combination ART, but large heterogeneity in ART regimens
- PIs appear to be associated with preterm birth when compared to non-PI ART which mostly include NNRTI-based or NRTI-based.
- Few studies evaluating newer PIs or INSTIs
- Mechanisms by which PIs may affect preterm birth potentially include hormonal pathways via progesterone

Gaccioli F et al. Frontiers in Physiology. 2016

Major Studies Evaluating Birth Weight Outcomes by Geography and Results

Decreased risk for poor Birth Weight Outcomes (SGA, LBW, Birth Weight Z) Increased risk for poor Birth Weight Outcomes (SGA, LBW, Birth Weight Z)


No association with Birth Weight Outcomes

RESEARCH ARTICLE

All women

CrossMark

Theron Moodley¹, Dhayendre Moodley^{2*}, Motshedisi Sebitloane¹, Niren Maharaj¹ and Benn Sartorius³

				Bivariate	Multivariable vi	
Variable	Normal for GA $^{\rm i}\!\!:$ n (% $^{\rm ii}\!\!)$	Small for GA ⁱⁱⁱ : n (%)	p-value ^{iv}	OR [∨] (95 % CI)	OR (95 % CI)	Adj. <i>p</i> -value
ART regimen						
Nil ARVs	133 (89.86)	15 (10.14)	0.464	1 (ref)	1 (ref)	
AZT/NVP i, ii	901 (92.51)	73 (7.49)		0.72 (0.40–1.29)	0.37 (0.10–1.45)	0.153
D4T/3TC/NVP iii	824 (90.85)	83 (9.15)		0.89 (0.50–1.59)	0.29 (0.08-1.07)	0.063
EFV/TDF/FTC	1533 (92.02)	133 (7.98)		0.77 (0.44–1.35)	0.25 (0.07–0.87)	0.030

Table 4 Small for gestational age overall and for HIV + ve only

i Gestational Age (GA), ii row percentage, iii below 10th percentile, iv Chi-square, v Odds Ratio, vi following variables were adjusted for in the multivariable adjusted model, year age group, mode of delivery, HIV status

i AZT/NVP vs D4T/3TC/NVP p-value = 0.410, *ii* AZT/NVP vs FTC p-value = 0.521, *iii* D4T/3TC/NVP vs FTC p-value = 0.800, *iv* following variables were adjusted for in the multivariable adjusted model, *year* age group, mode of delivery, HIV status, CD4 (HIV positive mothers only), ART regimen (HIV positive mothers only)

RESEARCH ARTICLE

Improved pregnancy outcomes with increasing antiretroviral coverage in South Africa

Theron Moodley¹, Dhayendre Moodley^{2*}, Motshedisi Sebitloane¹, Niren Maharaj¹ and Benn Sartorius³

TDF/FTC/EFV vs. no ARVs decreased the risk of SGA (aOR=0.25; 95% CI: 0.07-0.87; *p*=0.03)

d4T/3TC/NVP vs. no ARVs – similar trends (*p*=0.06)

чапаріе	INOITHALIOLGA : II (%)	SITIAII TOLGA : TI (%)	<i>p</i> -value	UK (95 % CI)	UK (93 % CI)	Auj. <i>p</i> -value
ART regimen						
Nil ARVs	133 (89.86)	15 (10.14)	0.464	1 (ref)	1 (ref)	
AZT/NVP i, ii	901 (92.51)	73 (7.49)		0.72 (0.40–1.29)	0.37 (0.10–1.45)	0.153
D4T/3TC/NVP iii	824 (90.85)	83 (9.15)		0.89 (0.50–1.59)	0.29 (0.08–1.07)	0.063
EFV/TDF/FTC	1533 (92.02)	133 (7.98)		0.77 (0.44–1.35)	0.25 (0.07–0.87)	0.030

* Gestational Age (GA), ii row percentage, iii below 10th percentile, iv Chi-square, v Odds Ratio, vi following variables were adjusted for in the multivariable adjusted model, year age group, mode of delivery, HIV status

i AZT/NVP vs D4T/3TC/NVP p-value = 0.410, *ii* AZT/NVP vs FTC p-value = 0.521, *iii* D4T/3TC/NVP vs FTC p-value = 0.800, *iv* following variables were adjusted for in the multivariable adjusted model, *year* age group, mode of delivery, HIV status, CD4 (HIV positive mothers only), ART regimen (HIV positive mothers only)

TABLE 3. Adverse Birth Outcomes Among Women Who Initiated TDF/FTC/EFV Compared With Other ARV Regimens in Pregnancy

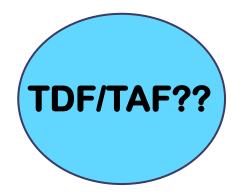
		CD4 <350*			CD4 >350*	*		All CD4 Strat	a†
	Initiated Atripla in Pregnancy (N = 231)	Initiated Other 3-Drug ART in Pregnancy‡ (N = 243)	aOR (95% CI)	Initiated Atripla in Pregnancy (N = 335)	Initiated ZDV in Pregnancy (N = 752)	aOR (95% CI)	Initiated Atripla in Pregnancy (N = 1054)	Initiated Any other ARV in Pregnancy (N = 2172)	aOR (95% CI)
SB,§ n (%)	4 (1.7)	12 (4.9)	0.1 (0.01 to 1.0)	9 (2.7)	21 (2.8)	0.9 (0.4 to 2.1)	18 (1.7)	70 (3.2)	0.6 (0.3 to 1.3)
Preterm <37 wks, n (%)	45 (19.5)	48 (19.8)	0.5 (0.2 to 1.2)	60 (17.9)	123 (16.4)	1.1 (0.6 to 2.1)	192 (18.2)	450 (20.7)	0.7 (0.5 to 1.1)
SGA,¶ n (%)									
Botswana norms	24 (10.4)	50 (20.6)	0.5 (0.3 to 1.1)	53 (15.8)	157 (20.9)	0.6 (0.4 to 1.0)	125 (11.9)	459 (21.1)	0.4 (0.3 to 0.6)
WHO norms	35 (15.2)	62 (25.5)	0.5 (0.3 to 0.8)	83 (24.8)	216 (28.7)	0.7 (0.5 to 1.0)	202 (19.2)	602 (27.7)	0.5 (0.4 to 0.7)
Any adverse outcome,# n (%)	61 (26)	97 (40)	0.4 (0.2 to 0.7)	104 (31)	272 (36)	0.4 (0.3 to 0.6)	287 (27)	880 (41)	0.4 (0.3 to 0.6)

Zash et al. JAIDS. 2016

TABLE 3. Adverse Birth Outcomes Among Women Who Initiated TDF/FTC/EFV Compared With Other ARV Regimens in Pregnancy

		CD4 <350	*		CD4 >350*	*		All CD4 Stra	ta†
			SGA com % CI: 0.4-		TDF/F	TC/EFV v	/s. all c	other 3	-drug
			any adver 9 ART (aC				6)	/FTC/E	.3)
wks, n (%) SGA,¶ n (%)									
Botswana norms	24 (10.4)	50 (20.6)	0.5 (0.3 to 1.1)	53 (15.8)	157 (20.9)	0.6 (0.4 to 1.0)	125 (11.9)	459 (21.1)	0.4 (0.3 to 0.6
WHO norms	35 (15.2)	62 (25.5)	0.5 (0.3 to 0.8)	83 (24.8)	216 (28.7)	0.7 (0.5 to 1.0)	202 (19.2)	602 (27.7)	0.5 (0.4 to 0.7
any adverse outcome,# n (%)	61 (26)	97 (40)	0.4 (0.2 to 0.7)	104 (31)	272 (36)	0.4 (0.3 to 0.6)	287 (27)	880 (41)	0.4 (0.3 to 0.6

Adjusted Relative Risk of SGA Infant Outcomes in Women on combination ART prior to conception in Botswana


	TDF FTC EFV (n=2503)	TDF FTC NVP (n=775)	AZT 3TC NVP (n=1403)	TDF FTC Lop/r (n=237)	AZT 3TC Lop/r (n=169)
SGA (<10 th percentile)	REF (17%)	1.4 (1.2-1.7) (25%)	1.7 (1.5 – 1.9) (29%)	1.6 (1.3-2.0) (28%)	1.1 (0.8-1.6) (21%)
Very SGA (<3 rd percentile)	REF (7.3%)	1.5 (1.2-1.9) (11%)	1.8 (1.4-2.2) (13%)	1.8 (1.3-2.6) (14%)	1.7 (1.1-2.6) (13%)

Adjusted for maternal age, education, gravida

- Hypertensive disorders of pregnancy (Preeclampsia/ecla mpsia, PIH)
- Gestational DM

- Preterm birth
- Birth weight (LBW, SGA)
- Bone
- Mitochondrial Toxicity

Tenofovir and Effects on Bone

- Effects on bone health
- Concern for decreased bone mineral content
- Compromised intrauterine growth and slightly decreased fetal bone porosity in infants born to high dose (30 mg/kg) TDFtreated SIV-infected and –uninfected monkeys

South Africa MCH-ART Study (n=646)

Table 2. Linear Regression Models for Change in Femur Length z Score and Humerus Length z Score^a

	Change in FL	Z	Change in HL	Z
Effect	Coefficient (95% CI)	P Value	Coefficient (95% CI)	<i>P</i> Value
Model A	ssessing TDF Exposure as Conti	nuous Variable		
TDF exposure in pregnancy, per 1-wk increment before last US scan	0.00 (01 to .01)	.51	0.00 (01 to .01)	.40
Model Assessing TDF Exposure as Categorical Variable				
TDF exposure in pregnancy, wk before last US scan				
≥25	0.05 (13 to .23)	.56	-0.21 (43 to .03)	.07
10–24	0.08 (05 to .21)	.23	-0.11 (27 to .06	.21
<10	Reference		Reference	

South Africa MCH-ART Study (n=646)

 Table 2.
 Linear Regression Models for Change in Femur Length z Score and Humerus Length z Score^a

	Change in FL	.Z	Change in HL	Z
Effect	Coefficient (95% CI)	<i>P</i> Value	Coefficient (95% CI)	P Value
	ation between dura ure and fetal long			.40
Model Assessing TDF Exposure as Catego	rical Variable			
TDF exposure in pregnancy, wk before last	US scan			
≥25	0.05 (13 to .23)	.56	-0.21 (43 to .03)	.07
10–24	0.08 (05 to .21)	.23	-0.11 (27 to .06	.21
<10	Reference		Reference	

Jao et al. CID. 2016

J Antimicrob Chemother 2016; **71**: 3206–3211 doi:10.1093/jac/dkw268 Advance Access publication 11 July 2016 Journal of Antimicrobial Chemotherapy

Levels of bone markers in a population of infants exposed *in utero* and during breastfeeding to tenofovir within an Option B+ programme in Malawi

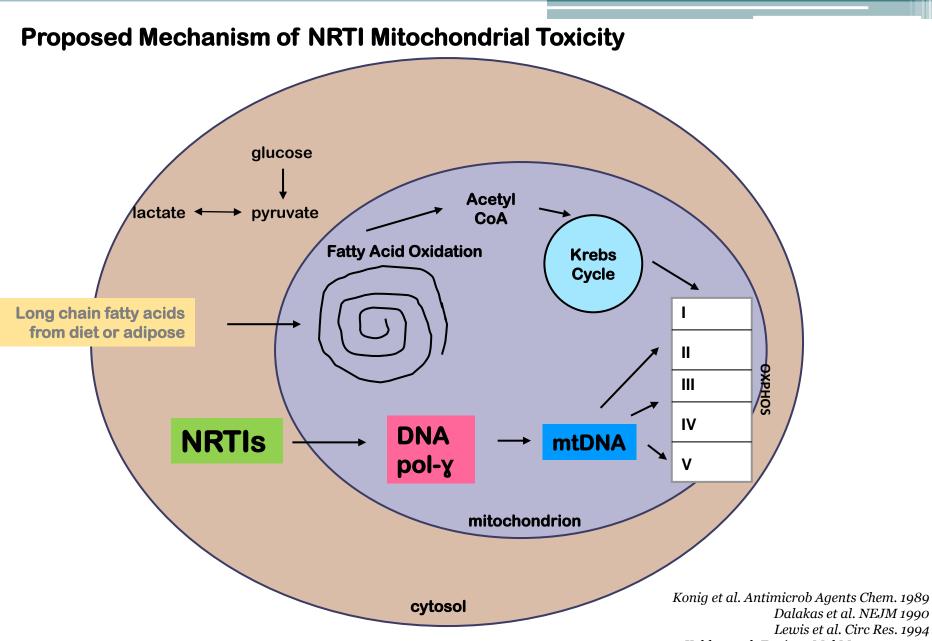
Marco Floridia^{1*}, Giuseppe Liotta², Mauro Andreotti¹, Clementina M. Galluzzo¹, Roberta Amici¹, Haswell Jere³, Jean-Baptiste Sagno³, Maria C. Marazzi⁴, Ersilia Buonomo², Paola Scarcella², Sandro Mancinelli², Stefano Vella¹, Marina Giuliano¹ and Leonardo Palombi²

- n=136 Infants
- Comparison: TDF/3TC/EFV (OPTION B+) vs. d4T or AZT/3TC/NVP
- Bone markers:
- BAP and C-telopeptide of Type I Collagen at 6 mo, 12 mo

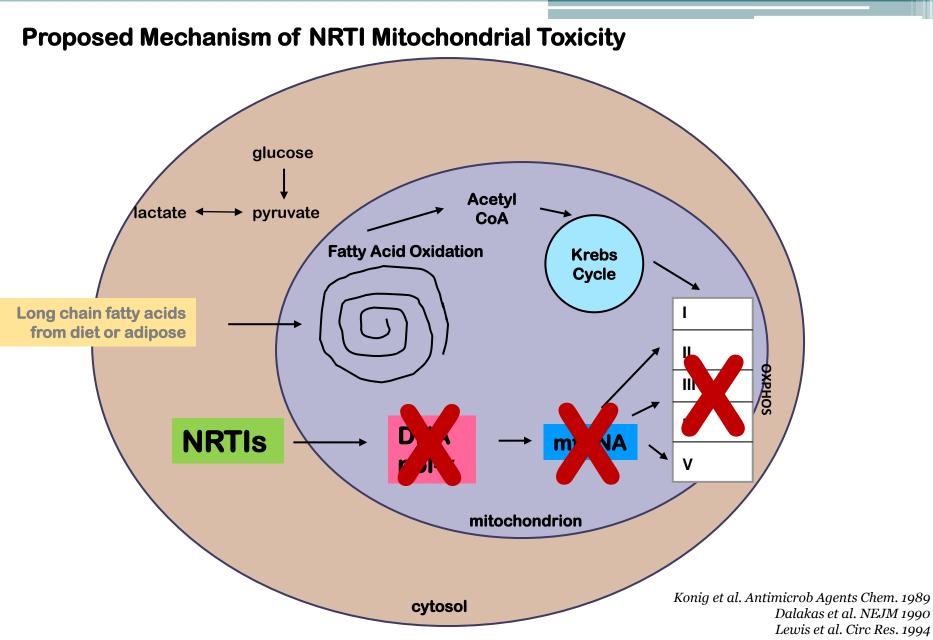
No differences in bone markers between TDF vs. non-TDF exposed infants

Lower Newborn Bone Mineral Content Associated With Maternal Use of Tenofovir Disoproxil Fumarate During Pregnancy

George K. Siberry,¹ Denise L. Jacobson,² Heidi J. Kalkwarf,³ Julia W. Wu,⁴ Linda A. DiMeglio,⁵ Ram Yogev,⁶ Katherine M. Knapp,⁷ Justin J. Wheeler,⁸ Laurie Butler,⁹ Rohan Hazra,¹ Tracie L. Miller,¹⁰ George R. Seage III,⁴ Russell B. Van Dyke,¹¹ Emily Barr,¹² Mariam Davtyan,¹³ Lynne M. Mofenson,¹ and Kenneth C. Rich¹⁴; for the Pediatric HIV/AIDS Cohort Study


Table 4. Adjusted Differences in Whole-Body Bone Mineral Content in Tenofovir-Exposed Compared With Tenofovir-Unexposed Infants

	Mean Difference (g) i	n Whole Body	Bone Mineral Content (With He	ad)
	Unadjusted		Adjusted ^a	
Characteristic	Mean Difference (95% CI)	<i>P</i> Value	Mean Difference (95% CI)	<i>P</i> Value
Primary exposure				
Tenofovir vs no tenofovir exposure	-7.8 (-12.6, -3.1)	.001	-5.3 (-9.5, -1.2)	.013
Maternal characteristics				
Age, per year	0.08 (3, .5)	.69	0.04 (24, .33)	.77
Did not smoke in pregnancy	2.5 (-3.8, 8.7)	.43	1.1 (-3.4, 5.7)	.62
CD4 count ≥500 cells/mm ³ in 3rd trimester	1.7 (-4.4, 7.8)	.58		
Viral loa Infant cha	IC in TDF vs.	non-T	DF exposed	
Gestatic infants (mean d	ifforonco5	3 n-f	013)	.91
Gestatic IIIIaIIIS (IIIEaII U		$\mathbf{S}, \mathbf{p}_{\mathbf{U}}$.013)	.013
Age at dual-energy X-ray absorptiometry, days	0.5 (.2, .9)	.004	0.53 (.23, .82)	.0006
Non-black vs black, non Hispanic	8.7 (3.8, 13.6)	.0006	3.2 (-1.2, 7.6)	.16
Body length (cm)	3.0 (2.3, 3.8)	<.0001	2.4 (1.7, 3.2)	<.0001

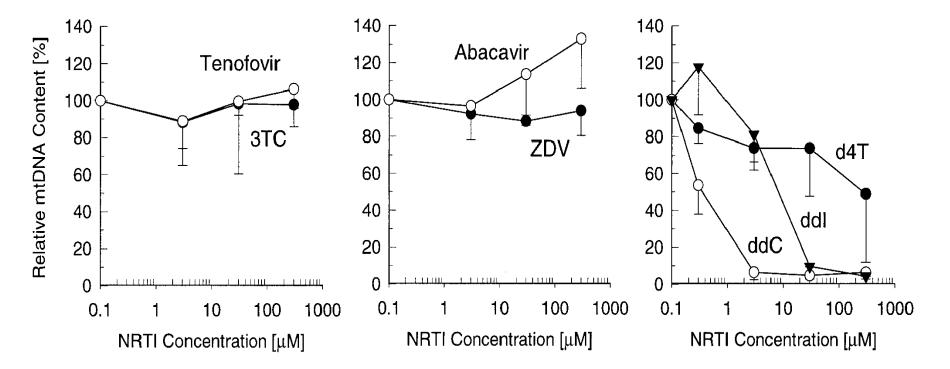

PROMISE 1084s substudy

	AZT mono	AZT/3TC/Lop/r	TDF/FTC/Lop/r
Mean LS- BMC	1.73 g	1.64 g	1.72 g
Mean WB- BMC	73.1 g	65.1 g	63.3 g

- No differences between AZT/3TC/Lop/r vs. TDF/FTC/Lop/r
- Significantly <u>LOWER</u> mean WB-BMC in AZT/3TC/Lop/r vs. AZT mono TDF/FTC/Lop/r vs. AZT mono

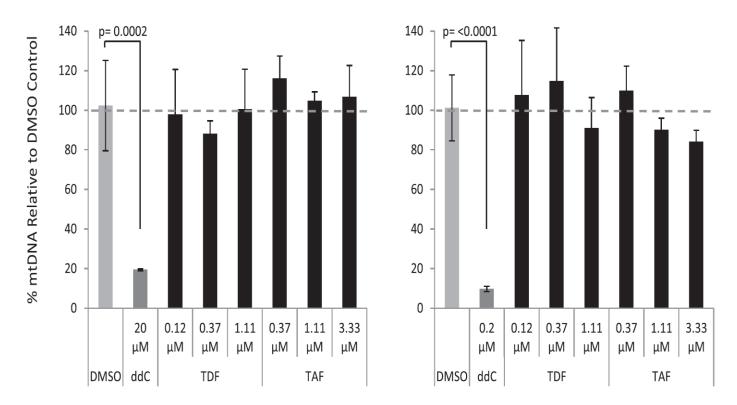
Kohler et al. Environ Mol Mutagen. 2007

Kohler et al. Environ Mol Mutagen. 2007


In utero HIV/ARV is associated with mitochondrial toxicity

Authors	Study	Sample size	Findings
Poirier et al 2003	WITS	30	Decreased mtDNA
Ross et al 2011	U.S.	46	Abnormal mtDNA levels Decreased Complex II:IV
Gingelmaier et al 2009	Germany	77	Decreased mtDNA Decreased Complex II:IV
Aldrovandi et al 2010	WITS, PACTG 1009	624	Abnormal mtDNA levels
Côté et al 2008	Canada	154	Increased mtDNA levels Abnormal mitochondrial gene expression
McComsey et al 2008	ACTG 5084	136	Increased mtDNA levels
Torres et al 2009	U.S.	108	Increased mitochondrial mutations

In utero HIV/ARV is associated with mitochondrial toxicity


Authors	Study	Sample size	Findings	
Poirier et al 2003	WITS	30	Decreased mtDI	NA
Ross et al 2011	U.S.	46	Abnormal mtDN	NA levels
	Most commonly recognized			olex II:IV
Gingelmaier et al 2009	Gi N	RTI culprits: d4T		JA olex II:IV
Aldrovandi et al 2010	W Pz	ddl AZT		[A levels
Côté et al 2008	Ca		Approximation Appression	A levels chondrial gene
McComsey et al 2008	ACTG 5084	136	Increased mtDNA levels	
Torres et al 2009	U.S.	108	Increased mitochondrial mutations	

Α

Fig. 3. Effect of ddC, TAF, and TDF on the levels of mtDNA in MT-2 and Jurkat T-cells. Data represent a mean \pm SD of at least 3 independent experiments. Paired, two-tailed Student's t-test compared with DMSO control; statistically significant (p < 0.05) differences are shown.

TAF does not decrease mtDNA levels

Some of the "Good" and the "Bad"

- Combination ART in conjunction with immune reconstitution may play role in increasing rates of hypertensive disorders of pregnancy since 1990
- Older PIs may be associated with gestational DM
- PI use may be associated with preterm birth outcomes
- There is reassuring data on the safety of TDF and potentially TAF in pregnancy with regards to early bone and mitochondrial effects

What's the Unknown?

- SAFETY
 - > Which ART regimens have the least adverse effects?
- TIMING OF ART IN PREGNANCY
 - > What impact does this have on adverse outcomes?
- MONITORING OF HIV-INFECTED PREGNANT WOMEN & THEIR CHILDREN –

How and who to target?

MECHANISMS –

How much are adverse effects attributable to actual pathophysiology resulting from HIV/ARV and how much can be mitigated by improved antenatal and postnatal care?

NEW ARVs –

What about newer drugs –Rilpivirine, Darunavir, Dolutegravir, Cabotegravir?

Eunice Kennedy Shriver National Institute of Child Health and Human Development

THANK YOU

