CTRIUMPh Pediatric Biomarker Substudy

IMPAACT TB Scientific Committee Meeting 30TH May 2017

Jeffrey Tornheim, MD MPH Johns Hopkins University Mandar Paradkar, DCH MPH BJMC Clinical Research Site

CTRIUMPH

MPAACT International Maternal Pediatric Adolescent AIDS Clinical Trials Network

- Background CTRIUMPh Study
- Cohort for TB Research by Indo-US Medical Partnership
- <u>Study Type:</u> Prospective Observational Study
- <u>Study Location</u>: BJGMC in Pune and NIRT in Chennai
- <u>Study Population</u>: 3 Prospective Cohorts
 - Active TB Cohort (800 PTB, 200 EPTB, 200 Pediatric Cases)
 - Household (HH) Contact Cohort (1200 Adults and Children)
 - Control Cohort (100 Adults and 50 Children)
- Part of "The Regional Prospective Observational Research in Tuberculosis" (RePORT) India Consortium which aims to establish a biorepository in India with an associated database of well-characterized specimens for future tuberculosis (TB) research.
 - Funded in collaboration between the governments of USA (NIH) and India (DBT)

Study Objectives

- <u>Aim 1</u>: To measure the **host and microbial factors associated with TB treatment outcomes** in Indian adults and children using the Active TB Cohort
- <u>Aim 2</u>: To investigate the host and microbial factors associated with the progression from infection to active TB disease in Indian adults and children using the Household Contacts of participants from the Active TB Cohort
- <u>Aim 3</u>: To explore the **host and microbial factors associated with TB transmission** using the Household Contacts Cohort

Schedule of Evaluations – Cohort A

Samples for Biorepository	<u>Entry</u>	<u>2W</u>	<u>4W</u>	<u>8W</u>	<u>5M</u>	<u>6M</u>	<u>12M</u>	<u>18M</u>	<u>24M</u>	<u>End</u> of Tx	TB Recurrence
Stored Plasma sample for PK ⁷			x		x						
Stored Plasma	Х		Х	Х		Х	Х		Х	Х	Х
Whole Blood for DNA				(X) ¹²							
Stored Sputum	Х	Х	Х	Х		Х				Х	X
Stored Urine	Х		Х	Х		Х	Х		Х	Х	X
Stored Hair	X		Х		Х	Х				Х	Х
Stored Mtb isolate	X			Х	Х	Х					X
Whole Blood for Host mRNA (PAXgene)	x		X	x		x	x		x	X	Х
Whole Blood forPBMC	X		Х	Х		Х	Х		Х	Х	Х
Whole blood for											
Quantiferon supernatant	X		Х	X		Х	X		Х	Х	Х

Total Pediatric samples- 406 plasma, 404 PBMCs, 367 paxgene, 153 plasma for PK, 148 QGIT supernatants, 77 DNA, 513 sputum/gastric aspirates, 401 urine, 312 hair and 18 MTB isolates.

Schedule of Evaluations – Cohort B

Time	Entry	4M	6M	12M	18M	24M	Active TB ¹
TT Skin Test	Н	H₂		H⁵		H⁵	
Quantiferon Gold in Tube	Н	H⁵		H⁵		H⁵	F
Samples for Biorepository							
Stored Plasma	Н	Н		Н			F
Stored DNA	Н						
Stored Sputum	Н	Н					F
Stored Urine	Н	Н		Н			F
Stored Hair	Н	Н		Н			F
Stored MTB isolate	Н						F
Stored QGIT supernatant	Η	Н		Н		Н	F
Stored Host mRNA (Paxgene)	Η	H		H			F
Stored PBMC	Η	H		H			F

We now have a repository of Pediatric samples- 436 plasma, 436 PBMCs, 379 paxgene, 344 QGIT supernatants, 204 DNA, 318 sputum/gastric aspirates, 395 urine, 236 hair and 8 MTB isolates.

C-TRIUMPh Substudy – Pediatric Biomarkers

Problem: Lack of biomarkers of treatment response & correlates of progression

- ▶2-month smear conversion unreliable for outcome (24% sensitive 85% specific)
- ▶2 month culture conversion unreliable for outcome (40% sensitive and 85% specific)
- ➢<u>Most</u> pediatric patients are probable/possible, <u>not</u> confirmed
- ➢ Recent transcriptomic studies have had <u>few Indian or confirmed pediatric cases</u>:

C-TRIUMPh Substudy – Pediatric Biomarkers

Problem: Lack of biomarkers of treatment response & correlates of progression

- ▶2-month smear conversion unreliable for outcome (24% sensitive 85% specific)
- >2 month culture conversion unreliable for outcome (40% sensitive and 85% specific)
- ➢<u>Most</u> pediatric patients are probable/possible, <u>not</u> confirmed
- ➢ Recent transcriptomic studies have had <u>few Indian or confirmed pediatric cases</u>:

Author	Timeframe	# of Genes	Confirmed Indian	Confirmed Pediatric	Confirmed Pediatric	
Addioi	Timenanie	# Of Genes	Cases	Cases (Derivation)	Cases (Validation)	
Anderson	Cross-sectional	51	0	114	35	
Berry	Longitudinal Post-Treatment	86	0	0	0	
Bloom	Longitudinal Post-Treatment	664 (Dx) 320 (Tx)	0	0	0	
Jenum	Cross-sectional	12	40	40 (single set)		
Kaforou	Cross-sectional	44	0	0	0	
Laux da Costa	Cross-sectional	3	0	0	0	
Maertzdorf	Cross-sectional	4	120	0	0	
Swaanay	Longitudinal Dest Treatment	3	113 (same patients	77	111 (same patients as	
Sweeney	Longitudinal Post-Treatment	5	as Maertzdorf)	37	Anderson)	
Zak	Longitudinal Pre-Treatment	16	0	37 (adolescents)	9 (adolescents)	

Aims and Hypotheses

AIM 1 – Confirm the presence of previously published gene signatures and evaluate their relative accuracy among a cohort of confirmed positive Indian pediatric TB patients

- AIM 2 Evaluate whether positive gene signatures return to normal after 6 months of treatment in a cohort of Indian confirmed pediatric TB patients
- AIM 3 Evaluate whether negative gene signatures remain consistently negative in exposed household contacts over time

Methods

➢All confirmed TB cases <15 years old (N=16) were matched by age and sex to household contacts with negative TST/IGRA at enrollment in a 2:1 ratio (N=32)

>Whole blood was collected at t= 0,1, and 6 months for cases

Whole blood was collected at t= 0,4, and 12 months for exposed controls. TST and IGRA were repeated until either test converted or 1 year passed

mRNA was extracted using Qiagen PAXgene Blood RNA Kits and sequenced on Illumina HiSeq 2500 to generate 100bp paired-end sequences. Reads were aligned to the human genome (GRCH38.10) using the STAR aligner and annotated using GENCODE.

➢Count data were exported to R for analysis. Data were filtered to include only protein coding genes. Differential expression analysis was conducted using DESeq2 with a BH-false discovery rate of <0.05. Genes with absolute log₂ intensity ratio of at least 1 were considered differentially expressed.</p>

Clinical Characteristics of Study Participants

Characteristic	CTRIUMPh Cases (N=101)	Biomarker Study Cases (N=16)		isehold Controls Nonconverters (N=21)
	N (%)	N (%)	N (%)	N (%)
Median Age in Years (range)	8 (1-14)	9.5 (3-14)	9 (6-14)	10 (2-14)
Male	51 (50.5)	8 (50.0)	6 (54.5)	9 (42.9)
BCG Scar	78 (77%)	8 (50.0)	5 (45.5)	12 (57.1)
Pulmonary TB	74 (73.3)	8 (50.0)	NA	NA
EPTB ¹ Lymph Node	11 (36.7) ¹	6 (75.0)	NA	NA
EPTB ¹ Abdominal	14 (46.7) ¹	0	NA	NA

¹EPTB = Extrapulmonary TB. Percentage reflects N = 30 for CTRIUMPh, N=8 for biomarker substudy.

Diagnostic Characteristics of Participants With TB

Characteristic	CTRIUMPh Cases	Biomarker Study Cases
	N (% of Disease Type)	N (% of Disease Type)
History of TB Contact	66 (65.3)	9 (56.3)
Median Illness Duration (range)	30 Days (0-120)	52.5 Days (25-60)
Smear Positive PTB ¹	9 (12.2)	3 (37.5)
Xpert MTB/RIF Positive PTB ¹	14 (18.9)	6 (75.0)
Culture Positive PTB ¹	13 (16.7)	5 (62.5)
Culture Negative by 2 Weeks	8 (61.5)	4 (80.0)
Culture Negative by 6 Months	13 (100.0)	5 (100.0)
Pathologically Confirmed EPTB ²	11 (36.7)	8 (100.0)
Chest X-ray with Cavitary Disease	20 (27.4)	2 (25.0)
Chest X-ray Score (Range 0 – 40)	25 (0 – 110)	22 (0 – 130)

¹PTB = Pulmonary TB. Percentage reflects N=74 for CTRIUMPh, N=8 for biomarker substudy.

²EPTB = Extrapulmonary TB. Percentage reflects N = 30 for CTRIUMPh, N=8 for biomarker substudy.

Results of Transcriptomic Analysis

Cross-Sectional Analysis of Cases vs. Controls

CROSS-SECTIONAL ANALYSIS

Pediatric Gene Expression Confounding

➢Initial analysis demonstrated the importance of matching cases by age / sex

➤Analyses from here forward are controlled for:

- ≻Age
- ≻Sex
- ➤Case vs. Control Status
- Pulmonary vs. Extrapulmonary TB (Cases)
- ➢ Baseline vs. Follow-Up Status
- ≻Time of Follow-Up (2nd vs. 3rd Visit)
- Conversion vs. Nonconversion to LTBI

Cross-Sectional Analysis of Cases vs. All Controls

≻Out of 19384 protein-coding genes:

- ▶131 genes were upregulate (0.68%)
- ➢6 genes were downregulated (0.031)
- \succ 14 of those had ≥ 1 log₂-fold change

Heatmap of Differential Transcription

Between Cases and Exposed Controls

Cross-Sectional Analysis of Cases vs. All Controls

Comp	Comparison of 14 Differential Expressed Genes Between Pediatrics TB Cases and Exposed Household Controls in CTRIUMPh with Other Published TB Signatures								
		TB		TB vs			s. LTBI	Interferon	
CTRIUMPh	Berry 393 Genes	Kaforou 53 Genes	Sweeney 3 Genes	Anderson 51 Genes	Kaforou 44 Genes	Anderson 42 Genes	Kaforou 27 Genes	Obermose 79 Genes	
APOL4									
AZU1									
C1QB	X			X			X		
C1QC							X		
CLDN18									
CTSG									
DEFA3		X				Х			
ELANE									
GBP6	X	X		Х	Х	Х	X	X	
HBD									
METTL7B									
MPO							X		
PRTN3									
SEPT4	Х	X			X			Х	

> Differential expression demonstrated partial cross-over with other published signatures

Cross-Sectional Analysis of Cases vs. Controls

CROSS-SECTIONAL ANALYSIS

Cross-Sectional Analysis of Cases vs. Negative Controls

≻A comparison of only controls who never converted TST or IGRA:

- ▶135 genes were upregulate (0.7%)
- ▶29 genes were downregulated (0.15%)
- >8 of those had ≥ 1 log₂-fold change

Heatmap of Differential Transcription Between Cases vs. Nonconverting Controls

Cases vs. Age & Sex-Matched Exposed Controls

Comparison of 8 Differential Expressed Genes Between Pediatrics TB Cases and Exposed									
Household Controls in CTRIUMPh with Other Published TB Signatures									
		TB		TB vs	s. OD	TB vs	Interferon		
CTRIUMPh	Berry 393	Kaforou	Sweeney	Anderson	Kaforou	Anderson	Kaforou 27	Obermose	
	Genes	53 Genes	3 Genes	51 Genes	44 Genes	42 Genes	Genes	79 Genes	
APOL4									
AZU1									
CTSG									
DEFA3		Х				Х			
GBP6	X	Х		X	Х	Х	X	X	
METTL7B									
МРО							X		
PRTN3									

> C1QB, C1QC, CLDN18, ELANE, HBD, and SEPT4 (lower log₂-fold changes (0.83–1))

➢None of the 3 genes identified by Sweeney, et al. were significantly differentially expressed in our data (GBP5, DUSP3, and KLF2)

► No difference was noted between PTB and EPTB patients

Longitudinal Analysis of Cases (0 vs. I and 6 Months) LONGITUDINAL ANALYSIS OF CASES

Cases Over Time (0 vs. 6 Months of Treatment)

➢6 genes were upregulate (0.031%)

➤336 genes were downregulated (1.7%)

 \succ 10 had ≥ 1 log₂-fold change at 1 month

 \succ 2 had ≥ 1 log₂-fold change at 6 months

10 Differentially Expressed Genes Between Pediatrics TB Cases at Baseline and at 1 Month of Treatment

CTRIUMPh	Kaforou 27 Genes (TB vs. LTBI)
C1QC	
CD177	
CLRN1	
ELANE	
GLDN	
GPR4	
MMP1	
MPO	Х
PRTN3	

Clustered Heatmap of Differential Transcription Between Baseline and 6 Month of Treatment for Pediatric TB Cases

ZG16

Longitudinal Analysis of Controls (0 vs. 12 Months) LONGITUDINAL ANALYSIS OF CONTROLS

CTRIUMPH

CENTER FOR CLINICAL GLOBAL HEALTH EDUCATION

Exposed Controls Over Time (0 vs. 12 Months)

➢Infected Exposed Controls (N=9)

- \succ 504 differentially expressed genes with ≥ 1 log₂-fold change at 12 months
- ➢None of these were components of any of the published signatures reviewed

➤Healthy Exposed Controls (N=8)

≻Only 1 gene to be significantly differentially expressed at 12 months

➢HES4 = transcriptional regulator

Conclusions

Transcriptomic evaluation of 16 confirmed pediatric TB patients and 32 ageand sex-matched exposed controls (TST and IGRA negative) found:

- ➤14 differentially expressed genes that distinguished cases from controls
- ➢8 of those distinguished cases from controls who never developed LTBI
- ➤10 differentially expressed genes among cases between 0 and 1 month of treatment
- ➤504 genes differentially expressed between 0 and 12 months for controls with LTBI
- ➤1 gene differentially expressed between 0 and 12 months for nonconverting controls
- Comparison with published signatures found:
 - ▶ Partial crossover with TB signatures of Anderson, Berry, Kaforou, and Obermose
 - ≻No cross-over with TB signature published by Sweeney, et al.
 - ➢No cross-over with LTBI signature Zak, et al.

Next Steps and Future Directions

Additional longitudinal analyses

Address changes between 1 and 6 months for cases

➤Address changes during the months before conversion to LTBI

Optimize gene lists based on sensitivity analysis

>Need to optimize list in light of differing methods in published papers

► Log-fold changes of 0.5, 1, 1.5, or 2

➤Analysis of other biomarkers

- ➤miRNA analysis
- Metabolite analysis

Frequency Distribution of Differentially Expressed Genes Among Controls Who Converted to LTBI Over Time, (False Discovery Rate <0.05), by Log2-fold Changes

Log2-fold change

Acknowledgements

BJMC-JHU Investigators		Institute of Bioinformatics	NIRT Investigators
Sushant Meshram	Amita Gupta	Akhilesh Pandey	Padmapriyadarsini C
Dileep Kadam	Vidya Mave	Anil Madugundu	Geetha Ramachandran
Rahul Lokhande	Akshay Gupte	Sreelaskshmi Sreenivasmurthy	Beena Thomas
Renu Bharadwaj	Nikhil Gupte		Uma Devi
Anju Kagal	Jonathan Golub		Gomathy N.S.
Sandhya Khadse	Mandar Paradkar		Luke Hannah
Aarti Kinikar	Rewa Kohli		Kavitha Danasekaran
Vandana Kulkarni	Nishi Suryavanshi		Kannan Thiruvengadam
Usha Balasubramanian	Andrea DeLuca		Shri Vijay Bala Yogendra
Neeta Pradhan	Petros Karakousis		
	Noton Dutta		

Eunice Kennedy Shriver National Institute of Child Health and Human Development Department of Biotechnology Ministry of Science and Technology

