The development of broadly neutralizing antibodies in HIV-infected infants

Cassie Simonich Julie Overbaugh

Studies of infant nAb responses to HIV

Seattle/Kenya Collaboration

What is the nAb response to HIV infection in infants?

There are many unique aspects of MTCT

In the case of intrapartum and breastfeeding transmission, infection occurs and infant antibody responses develop in the face of **passively acquired HIV-specific antibodies from the mother**

- These maternal HIV-specific Abs could create immune complexes that enhance the developing Ab responses in infants
- Studies from the Haigwood lab in NHP suggest passive abs can augment de novo responses (Haigwood JV 2004, Ng Nat Med 2010)

The viruses that establish infection in infants are generally neutralization escape variants

- Sensitive
 Escape occurs through conformational masking not by mutation in the epitope itself variants are not
- Perhaps the fey protein of viruses transmitted to infants have unique properties

Infants have higher viral loads than adults

Viral load is correlated with development of bnAbs

Piantadosi JV 2009; Sather JV 2009; Euler JID 2010; Gray JV 2011; Rusert Nat Med 2016

Time since HIV infection

Do infants develop bnAbs?

Nairobi Breastfeeding Clinical Trial: conducted 1992-1997 (pre PMTCT)

Leslie Goo Goo *Nature Medicine* 2014

Pediatric broadly neutralizing antibody responses

Goo Nature Medicine 2014

12-30 months of age

- **71%** (20/28) tier-2, cross-clade neutralization
- **29%** (8/28) neutralized viruses from 4 different clades

Median age of 6.6 years

75% (64/85) neutralized >50%
 of a cross-clade panel of
 viruses

Viral load associated with neutralization breadth

Some infants develop bnAbs with rapid kinetics

Age (months)

- 20/28 infants developed cross clade nAbs at a median of 22 months post-infection
- Some developed bnAbs within the first year of infection
- Unable to detect dominant plasma responses targeting known bnAb epitopes, suggesting the responses may be polyclonal and/or directed to novel epitopes

First case of infant-derived HIV antibodies

- Clade A infected infant; first positive at 4 months (HIV RNA and DNA negative at 1.5 months of life)
- Cross-clade neutralization detected at ~1 year post-infection
- Stored sample from Nov 1995
- Screened individual IgG⁺ memory B cell culture supernatants for neutralizing activity
- Ten HIV-specific nAbs were isolated
- 6 show some ability to neutralize a Tier 2 virus
- One showed cross-clade breadth: BF520.1
- All were unique B cell lineages

A combination of mAbs contribute to breadth, one of which has cross-clade breadth

			BF520 Plasma	BF520.1	BF520.2	BF520.3	BF520.4	BF520.5	BF520.6	BF520.7	BF520.8	BF520.9	BF520.10
		SIV	<100	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
Tier 1	Clade B	SF162	>3200	0.22	0.65	1.47	6.96	2.67	1.32	0.75	1.07	3.41	1.08
		Q461.d1	480	>20	1.72	1.76	6.23	>20	0.69	1.97	2.23	>20	>20
Tier 2 Tier 3	Clade A	Q23.17	339	0.29	>20	>20	>20	>20	>20	>20	>20	>20	>20
		Q842.d16	306	>50	25.7	19.5	26.7	11.4	>50	23	>50	42.1	>50
		Q769.B9	<100	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
		Q259.d2.26	121	>50	>50	>50	>40	>50	>50	>50	>50	>50	>50
		BJ613.E1	188	>50	>50	>50	>40	>50	>50	>50	>50	>50	>50
		Q168.a2	<100	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
		Q842.d12	115	>50	>50	>50	>40	>50	>50	>50	>50	>50	>50
	Clade A/D	BF535.A1	128	>50	>50	>50	>40	>50	>50	>50	>50	>50	>50
	Clade B	TRO.11	244	5.26	>20	>20	>20	>20	>20	>20	>20	>20	>20
		THRO4156.18	<100	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
		CAAN.A2	124	42.2	>50	>50	>20	>50	>50	>50	>50	>50	>50
		TRJO4551.58	124	>20	>20	>20	>40	>20	>20	>20	>20	>20	>20
		PVO.4	119	38.1	>50	>50	>20	>50	>50	>50	>50	>50	>50
Tier 2	Clade C	ZMN109F.PB4	108	>20	>50	>50	>40	>50	>50	>50	>50	>50	>50
		QC406.F3	922	0.2	>20	>20	>20	>20	>20	>20	>20	>20	>20
		DU156.12	228	5.33	>20	>20	>20	>20	>20	>20	>20	>20	>20
		DU422.1	159	6.81	>50	>50	>20	>50	>50	>50	>50	>50	>50
		DU172.17	159	20.6	>50	>50	>20	>50	>50	>50	>50	>50	>50
		CAP210.E8	186	>20	>50	>50	>40	>50	>50	>50	>50	>50	>50
	Clade D	QB857.B3	142	>20	>50	>50	>40	>50	>50	>50	>50	>50	>50
		QD435.A4	110	>20	>50	>50	>40	>50	>50	>50	>50	>50	>50

Negative stain EM reconstruction of Env:Ab

BG505 T332N- an infant derived clade A SOSIP trimer - with bnAb BF520.1 Fab

- BF520.1 targets the N332 supersite in V3
- BF520.1 utilizes distinct germline genes, has less SHM and lacks rare indels compared to adult mAbs targeting the N332 supersite

Hans Verkerke, James Williams, Kelly Lee

Infant nAbs exhibit low levels of somatic hypermutation

Data from bnAber.org and Corti (2013) *Annual Rev Immuno,* Li (2015) *Molecular Immunology,* Scheid (2009) *Nature,* Mouquet (2001) PLoS ONE

BF520

- This infant had a polyclonal response that led to breadth at ~ 1 year PI
- There was one N332 bnAb, BF520.1, that contributed to breadth along with other more clade specific nAbs
- BF520.1 binds, but does not neutralize autologous transmitted virus; nor did any of the other 9 nabs from BF520
 - •binding may have initiated the response
- BF520.1 does neutralize later autologous variants (2 months later)

Simonich Cell 2016

Participants and Staff of the Nairobi Breastfeeding Clinical Trial

Funding: R01AI120961; R01 AI076105

Julie Overbaugh

Current and former members of the Overbaugh lab

Xueling Wu Former Postdoc

PhD 2013

Leslie Goo PhD 2013

Laura Noges Te Fellow M

Ted Gobillot Vrasha Chohan MSTP student Technician

n Bri Henessey Technician Stephanie Rainwater Technician

Collaborators

Ruth Nduati

Joan Kreiss

Erick Matsen Duncan Ralph Chris Small

Noah Sather

Vladimir Vigdorovich