HIV Prevention in Pregnancy

Author	Year	Country	PY	Population	
SOUTH					
Kieffer [56]	2011	Swaziland	346 Pregnancy		
Moodley [3]	2009	South Africa	679	Pregnancy	
Munjoma [58]	2010	Zimbabwe	298	Pregnancy	
Mbizvo [57]	2001	Zimbabwe	723	Postpar	
Mbizvo [57]	2001	Zimbabwe	370) Pregnancy	
Humphrey [46]	2006	Zimbabwe	7763	Postpar	
Morrison [42]	2007	Zimbabwe	1211	Postpar	
Moodley [5]	2011	South Africa	1946	Pregnancy and Postpar	
Morrison [42]	2007	Zimbabwe	793	Pregnancy	
Subtotal (I-squar	ed = 91.7	%, p < 0.001)			
SOUTHEAST					
Taha [45]	1998	Malawi	338	Pregnancy	
Mugo [38]	2011	Africa (multiple)	231	Pregnancy	
De Schacht [61]	2011	Mozambique	226	Pregnancy	
Keating [43]	2012	Malawi	275	Pregnancy	
Subtotal (I–squar	ed = 36.9	%, p = 0.19)			
EAST					
Kinuthia [64]	2010	Kenya	779	Pregnancy	
Leroy [65]	1994	Rwanda	204	Postpar	
Braunstein [63]*	2011	Rwanda	375	Postpar	
Wawer [66]	1999	Uganda	534	Pregnancy	
Gray [6]	2005	Uganda	997	Pregnancy	
Braunstein [63]	2011	Rwanda	250	Pregnancy	
Wawer [66]	1999	Uganda	746	Postpar	
Tabu [4]	2013	Uganda	312	Pregnancy	
Gray [6]*	2005	Uganda	3043	Postpar	
Subtotal (I–squar	ed = 82.1	%, p < 0.001)			
WEST					
Imade [68]	2012	Nigeria	235	Pregnancy	
Traore [69]	2012	Burkina Faso	126	Pregnancy	
Subtotal (I–squar	ed = 39.2	%, p = 0.20)			
Overall (I–squared	d = 89.7%	, p < 0.001)			

0

Acute HIV infection associated with greater MTCT risk

Drake, PLoS Med 2014

PrEP WHO Guidelines

Antiretroviral drugs for HIV prevention

The updated guidelines include a new recommendation on the use of oral pre-exposure prophylaxis (PrEP) to prevent the acquisition of HIV. WHO has expanded its earlier recommendations to offer PrEP to selected key populations. PrEP is now recommended for all populations at substantial risk of acquiring HIV, provisionally defined as an incidence of HIV greater than three per 100 personyears in the absence of PrEP.

3. CLINICAL GUIDELINES: ANTIRETROVIRAL DRUGS FOR HIV PREVENTION

3.1 Oral pre-exposure prophylaxis for preventing the acquisition of HIV Oral pre-exposure prophylaxis (PrEP) containing TDF should be offered as an additional prevention choice for people at substantial risk² of HIV infection as part of combination HIV prevention approaches (*strong recommendation, high quality, widence*).

Key populations:

Sero-discordant couples Commercial sex workers Men who have sex with men Intravenous drug users Cost-effectiveness of PrEP in pregnancy and breastfeeding

- Conditional probability model
- Women in sub-Saharan Africa

 Limited time window: first ANC visit to BF cessation
- Lifetime time horizon
- Health system perspective
- Model parameters
 - Medical literature
 - Program estimates from Zambia and Malawi
- Costs: PrEP program, HIV, preterm birth
 - 3% annual discount rate
 - Inflated to 2015 U.S. dollars

Key model parameters

HIV incidence in pregnancy, per 100py	4.7
HIV incidence in PP/BF, per 100py	2.9
MTCT risk if incident HIV, %	22.7
PTB risk on PrEP, %	20
PrEP effectiveness (RR HIV) 0.55	
Cost PrEP, annual	\$75
Cost PrEP program, annual	\$240
Cost HIV care (incl ART), annual	\$610

Price, JAIDS, in press

Base scenario

	Cost (per person)	Incremental Cost (\$)	DALY (per person)	Incremental Effectiveness (DALY)	ICER (\$/DALY)
PrEP	\$453	+\$330	3.16	—	\$980
No PrEP	\$123	_	3.49	+0.34	

< \$6462 / DALY = cost-effective < \$2154 / DALY = very cost-effective

In <u>one-way sensitivity analyses</u>, PrEP was no longer cost effective when:

- PrEP effectiveness was 22% or lower
- Risk for preterm birth was 30% or greater

Price, JAIDS, in press

IMPAACT 2009

Pharmacokinetics, Feasibility, Acceptability, and Safety of Oral Pre-Exposure Prophylaxis for Primary HIV Prevention during Pregnancy and Breast Feeding in Adolescents and Young Women

Participating sites

- Uganda
 - Baylor CRS
 - Makerere Uni-JHU CRS
- Malawi: Blantyre CRS
- Zimbabwe
 - Harare Family Care CRS
 - St. Mary's CRS
 - Seke North CRS
- South Africa: Shandukani CRS

PK component

PK Component (1)

- Approved by SLG in Feb 2016
- Designed to establish drug thresholds for optimal adherence to PrEP during pregnancy
 - Refines adherence outcome measure
 - Informs drug level-based counseling
- 15-20 participants in each of two groups:
 - Antepartum: 14-24 weeks gestation
 - Postpartum: 6-10 weeks postpartum
- Pregnant women \geq 16 yrs eligible
- All participants agree to take daily TDF-FTC

PK Component (2)

- 12 weeks of PK monitoring, with weekly DBS specimens for drug levels
 - Followed by an observational period to 6 weeks postpartum
- Specimens to be shipped to U.S. for testing
- Intensive monitoring of drug adherence

PrEP Comparison Component

Primary Objectives

- To characterize PrEP adherence among HIVuninfected women aged 16-24 years who initiate once-daily TDF-FTC in pregnancy
- To compare maternal and infant adverse events (including pregnancy outcomes) between women who initiate PrEP and those who decline PrEP

Secondary Objectives

- To identify individual, social, and structural barriers and facilitators to PrEP uptake during pregnancy
- To compare between the PrEP and non-PrEP cohorts:
 - Reported sexual risk behavior and incidence of STIs
 - HIV incidence
 - HIV drug resistance among HIV-infected mothers and infants

New cohort of candidates between ages 16-24 years of age, HIVuninfected, and <32 weeks gestation approached and offered two cohort options:

Intervention:

- Risk reduction counseling
- STI management
- SMS support for ANC
- Daily FTC/TDF (PrEP only)
- TFV-DP level-directed counseling (PrEP only)
- SMS messaging for adherence (PrEP only)

Ongoing evaluations:

- TFV-DP drug levels (PrEP only)
- Other adherence assessment (PrEP only)
- Adverse event monitoring, including renal function and bone
- Serial HIV testing
- Behavioral risk assessment

PrEP intervention switch:

- Cohort 1: If PrEP stopped, continue to follow; if PrEP resumed, HIV test required
- Cohort 2: PrEP initiation requires a Step Change: follow up thereafter as per Cohort 1

Study population (n=300)

- At least 16 years and less than 25 years
- Confirmed pregnancy at any gestational age
- HIV negative by HIV RNA screening
- No history of chronic disease
- For PrEP cohort:
 - Willingness to take PrEP through pregnancy to 26 weeks postpartum
 - Access to cell phone to receive SMS messages

Study endpoints

Adherence

Tenofovir diphosphate (TFV-DP) levels measured through dried blood spots.

• Safety (maternal and pregnancy)

- Adverse pregnancy outcomes will include:
 - Stillbirth
 - Low birthweight <2500g
 - Preterm delivery <37 weeks gestation
- Maternal AE outcome will be a composite:
 - Grade 3 or higher signs and symptoms
 - Grade 2 or higher chemistry abnormalities
 - Grade 3 or higher pregnancy-related diagnosis

Study endpoints

- Safety (infant)
 - Infant safety outcome measures:
 - Infant death
 - Creatinine clearance measured by Schwartz equation
 - Anthropometric growth
 - Lumbar spine and Whole Body bone mineral content
- HIV-related outcomes
 - HIV drug resistance in women who become infected while on PrEP
 - HIV drug resistance in infants who become infected while their mothers are on PrEP

Qualitative Component

- Provides deeper insight into feasibility
- In-depth individual interviews up to 60 women
- Purposive sampling based on PrEP initiation and adherence
- Stratified by pregnancy or postpartum periods
- Protocol-specific training will be provided
 - Standard interview guides
 - Mock interviews with protocol team review
- Sites for qualitative component not yet selected

