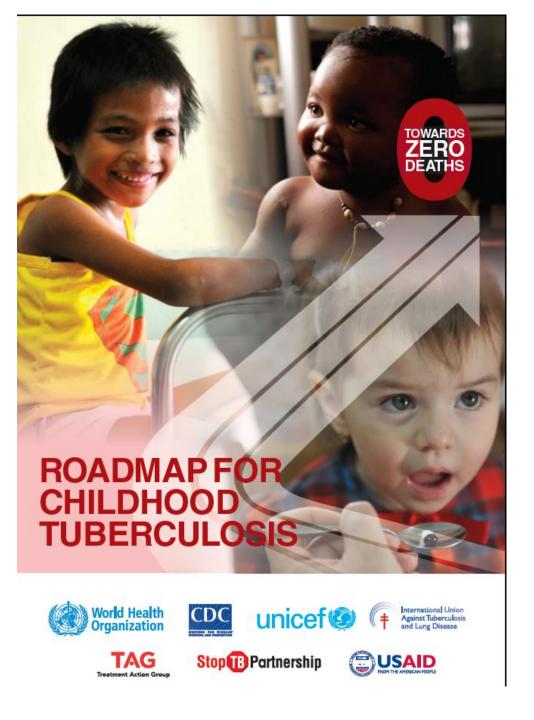
TB Trials in Adults and Opportunities for Children and Pregnant Women for MDR-TB and Drug-Sensitive TB

IMPAACT Annual Meeting Tuberculosis Scientific Committee Meeting 13 June 2015 Arlington, VA, USA

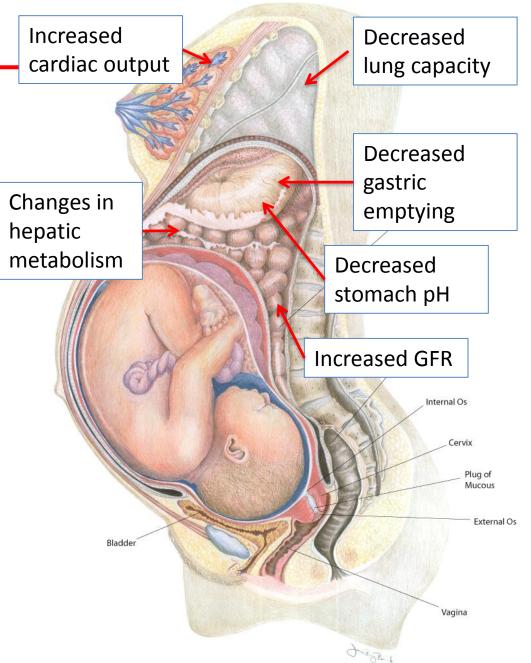
Presented by: Kelly Dooley MD, PhD Johns Hopkins University School of Medicine



Research Priorities for TB, in general

- Shortened treatment duration for **drug-sensitive TB**
- Shorter, more potent and tolerable regimens for drugresistant TB
- Development of safe and effective regimens for **cotreatment of TB and HIV**
- Simple, short, safe treatment for Latent TB Infection (LTBI)
- Optimized dosing of new and existing drugs for **special populations including children and pregnant women**

Childhood TB: Towards Zero Deaths


- "Childhood TB needs to be lifted out of the shadows"
 - Historical neglect
- 1,000,000 cases in 2014
- >136,000 deaths from TB yearly (55K in children with HIV)

Drugs in pregnancy

 "Pregnant women get sick, and sick women get pregnant"— the Second Wave Initiative

• Ethical imperative to include pregnant women in research of drug treatments: *Rationale:* need for effective treatment during pregnancy, fetal safety, harm from reticence to prescribe potentially beneficial medicines, justice and access to benefits of research participation Lyerly Int J Fem App Bioeth 2008

Recent/enrolling/planned trials in adults (DS-TB)?

TB Research Area	Key studies in Adults	Phase	Status (*children)
Drug-sensitive TB <i>Treatment shortening</i>	 HIGHRIF2: Higher-dose rifampicin (max 20 mg/kg) HIRIF: Higher-dose rifampicin (max 1200) RIFASHORT: Higher-dose rifampicin (to 1800), 4 months 	 	 Complete Complete In f/u Planning Planning
	 TBTC 31/A5349: High-dose rifapentine +/- moxifloxacin MAMS-TB-01: High-dose rifampicin +/- moxifloxacin RIFAQUIN: Once-weekly RPT+MOX in continuation phase REMox: MOX for H or E for 4 months 	• • •	 Enrolling (*12) Complete Complete Complete
	 STAND: Pretomanid+MOX+PZA APT: pretomanid instead of ethambutol, 12 weeks NC-005: BDQ+Pretomanid+Z, 8 weeks TRUNCATE-TB: multiple 2 month regimens ACTG A5289: Sutezolid with RIF or RBT+HZ, 2 stage ACTG PR698: Clofazimine + RHZE, 12 weeks NUH Singapore: EBA of faropenem+amox/clav 	 III II II III II II II II II II 	 On hold On hold Enrolling Planning(*12) Planning Planning Planning Planning

Opportunities: higher-dose rifampicin; rifapentine; bedaquiline, clofazimine

Recent/enrolling/planned trials in adults (DR-TB)?

TB Research Area	Key studies in Adults	Phase	Status (*children)
Drug-resistant TB Safer, shorter, more efficacious treatment	 A5312: INH dose-finding EBA LIN-CL001: Linezolid EBA/safety, dose-finding (DS-TB) OptiQ: Levofloxacin dose-finding CLAM320B2202: Clofazimine (50 or 100) + OBR Trial 213: Delamanid + OBR vs. placebo + OBR x 6 months STREAM Stage 1: 4MCEZHKPro/5MCZE (9 months) vs. SOC 	 II II II/III III III 	 Enrolling Enrolling Enrolling Planning In f/u In f/u
	 STREAM Stage 2: SOC vs. MCEZHKPro (9 mo) vs. BLCEZHPro (9 months, all-oral) v. BLCZHK (6 months, includes injectable) STAND: Pa-M-Z x 6 months NC-005: B-Pa-M-Z NIX-TB: B-Pa-LZD x 6 months (XDR-TB) A5343: bedaquiline + delamanid added to OBR x 6 months A5356: D+Lz (300, 600, 1200) + OBR vs OBR NExT-5001: LzBLvZ(H or Eth or Ter) vs. SOC MDR-END: D+Lvf+Lzd+Z vs. SOC TB-PRACTECAL: BPaMLz v BPaLzC v BPaLz vs. SOC endTB: 9BLzMZ v 9BLzCLvZ v 9BLzDLvZ v 9DCMZ v SOC 	 III III II II II II/III II/III II/III II/III III 	 Enrolling On hold In f/u Enrolling (*14) Planning Planning Enrolling Enrolling Enrolling Planning (*15)

Opportunities: shortened MDR-TB regimen (existing drugs); injectable-sparing regimens; short/inj-sparing with new drugs Key: Lz=linezolid; Lf=levofloxacin; D=delamanid; B=bedaquiline; Pa=PA824, or pretomanid; C=clofazimine; Z=pyrazinamide

WHO treatment guidelines for DR-TB: 2016 Update "Conventional treatment" – 18-24 months

Table 6. Medicines recommended for the treatment of rifampicin-resistant and multidrug-resistant TB¹

A. Fluoroquinolones ²	Levofloxacin		Lfx
		oxacin	Mfx
	Gatifle	oxacin	Gfx
B. Second-line injectable agents	Amikacin		Am
	Capre	omycin	Cm
	Kanan	nycin	Km
	(Strep	tomycin) ³	(S)
C. Other core second-line agents ²	Ethion	amide / Prothionamide	Eto / Pto
-	Cyclos	erine / Terizidone	Cs / Trd
	Linezo	lid	Lzd
	Clofaz	imine	Cfz
D. Add-on agents		Pyrazinamide	Z
(not part of the core MDR-TB regimen)	D1	Ethambutol	E
(High-dose isoniazid	H ^h
		Bedaquiline	Bdq
	D2	Delamanid	Dlm
		p-aminosalicylic acid	PAS
		Imipenem-cilastatin ⁴	Ipm
	D3	Meropenem ⁴	Mpm
		Amoxicillin-clavulanate ⁴	Amx-Clv
		(Thioacetazone) ⁵	(T)

Standard treatment

(5 "effective" drugs):

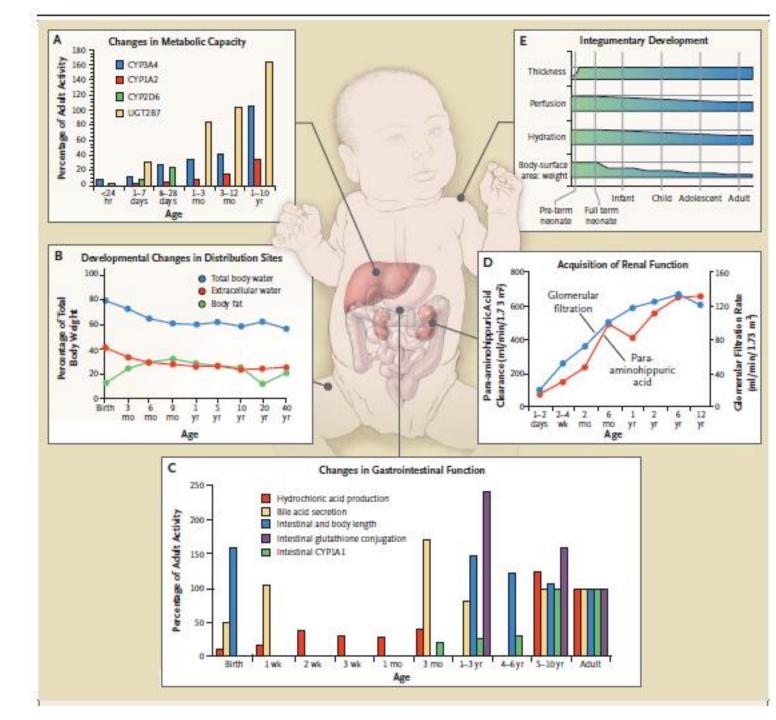
- One drug from Group A
- One drug from group B
- Two drugs from Group C
- Add Pyrazinamide
- Add group D2 or D3 if you don't have 5
- Consider strengthening with D1 (EMB, hi-INH)

WHO treatment guidelines for DR-TB: 2016 Update; "Shorter MDR-TB regimen" – 9-12 months

4-6 month intensive phase	 Gatifloxacin (or MOX) Kanamycin Prothionamide/Eth* Clofazimine High-dose INH* Pyrazinamide* 		 Not p Infect have 	ted with strai	ated for DR-TB n that does not ected to have sistance
			Individual pati	ent data analy	ysis (N=1,205)
			pattern	Shorter MDR-TB regimen	
	Ethambutol*	All opener roy	ardlass of puratinamida	N 1009/1116	% (95% CI)
		-	gardless of pyrazinamide uinolone susceptibility	1008/1116	90.3% (87.8%- 92.4%)
5 month	Gatifloxacin		de resistant; Jone resistant	19/28	67.9% (47.6%-84.1%)
continuation phase	Clofazimine	Pyrazinami	de resistant; Ilone susceptible	90/100	88.8% (47.3%-98.6%)
	Ethambutol* Pyrazinamide*		de susceptible; Ilone resistant	12/15	80.0% (50.0%-94.1%)
			de susceptible; None susceptible	121/125	96.8% (77.3%-99.6%)

*resistance among MDR-TB strains not uncommon

Recent/enrolling/planned trials in adults ?


TB Research Area	Key studies in Adults	Phase	Status (*children)
Co-treatment TB/HIV Effective, safe combinations, taking into account DDI	 Rifavirenz: EFV with higher-dose rifampicin REFLATE-TB: RAL 400 BID vs. RAL 800 BID vs. EFV w TB Rx INSPIRING: Dolutegravir with standard TB treatment A5290: HRbZE+LPV/r +/- RAL vs. HRZE+high dose LPV/r EARNEST: Rifabutin thrice-weekly vs. daily with LPV/r 	 	 Enrolling Complete Enrolling In f/u Enrolling*
Treatment LTBI <i>Shorter, very</i> <i>safe regimens</i>	 TBTC Study 26, subsets: once-weekly rifapentine+INH TBTC Study 37: RPT qd for 6 wks vs. RIF qd 4 mo vs. RPT+INH qwk A5279, daily RPT+INH x 30 days A5300 PHOENIX: MDR prophylaxis with DLM (vs. standard INH) V-QUIN: MDR prophylaxis with Levo (vs. placebo) 	 III III III III III III 	 Complete* Planning In f/u* Planning* Planning*
Severe disease <i>Regimens that</i> <i>reduce mortality</i>	 TBM-IT: Enhanced Rx with levofloxacin 20 mg/kg + RIF 15 mg/kg TBM trial in Indonesia: high-dose IV rifampicin +/- MOX 	• •	CompleteEnrolling*

Rb=rifabutin; R or RIF =rifampicin; Z=pyrazinamide; E=ethambutol; LPV/r=boosted lopinavir; RAL=raltegravir; MOX=moxifloxacin

Developmental pharmacology:

A Moving Target,

role of ontogeny

Kearns et al NEJM 2003 349: 1157.

Revised WHO dosing for children-Are we achieving target concentrations?

Drug	Revised dose	2-hour target	Mean	% achieving
			concentration	target
Isoniazid	10-15 mg/kg	3 mcg/mL	4.5 mcg/mL	65%
Rifampicin	10-15 mg/kg	8 mcg/mL	2.9 mcg/mL	6%
Pyrazinamide	30-40 mg/kg	20 mcg/mL	23 mcg/mL	55%
Ethambutol	15-25 mg/kg	2 mcg/mL	1.1 mcg/mL	15%

PHATISA Study (n=23, Durban, SA): Hiruy et al JAC doi:10.1093/jac/dku478 See also results from Indian children: Ramachandran *et al.* AAC doi:10.1128/AAC.04338-14

TB drug concentrations *matter* in children, and are influenced by HIV infection

TABLE 2. Peak Concentration and Exposure inHIV-infected and HIV-uninfected Children with TB

	HIV and TB (77)	TB (84)	
Dose Factors	Median (Intere	quartile Range)	P^*
Peak concentr	ation (C_{max})		
RMP	2.6(1.3-4.5)	5.1 (3.4-6.9)	< 0.001
INH	4.7 (2.8–7.2)	6.1 (4.0-8.4)	0.008
PZA	41.2 (31.7-48.0)	39.2 (30.5-44.9)	0.132
Exposure (AU	$C_{0,8}$		
RMP	10.4 (6.1 - 18.2)	23.4 (15.1-33.2)	< 0.001
INH	19.9 (10.7-30.8)	22.0 (15.0-33.1)	0.056
PZA	$219.1\ (172.6273.9)$	$218.2\ (175.9-255.8)$	0.452

*Mann-Whitney U test was used at 5% level of significance.

TABLE 4. Logistic Regression Showing FactorsInfluencing TB Treatment Outcome

Factor	Unadjusted Odds Ratio (95% CI)	Р	Adjusted Odds Ratio (95% CI)	Р
Age	1.002 (0.891-1.125)	0.979		
HIV infection	0.818(0.375 - 1.787)	0.615		
HAZ	1.033 (0.832-1.281)	0.771		
WAZ	1.171(0.828 - 1.656)	0.373		
WHZ	$1.043\ (0.7411.469)$	0.809		
C _{max} , μg/mL RMP	1.396 (1.148–1.698)	0.001	1.437 (1.157-1.784)	0.001
INH	1.094 (0.951-1.259)	0.210		
PZA	1.041 (1.007–1.076)	0.018	$1.041 \\ (1.005 - 1.079)$	0.027

Age, HIV Infection, HAZ, WAZ, WHZ and $C_{\rm max},$ µg/mL (RMP, INH and PZA) were taken in univariate analysis. Among those, $C_{\rm max}$ of RMP and PZA were significant at <0.1 level. These variables were considered by stepwise method at <0.05 level.

Among HIV-coinfected children, C_{max} of RMP (1.0 vs. 2.7 mcg/mL; p=0.003) and PZA (31.9 vs. 44.4 mcg/mL; p=0.012) were significantly lower in unfavorable than favorable responders

PHARMACOKINETICS OF AMIKACIN (20 mg/kg) (N=28)

		C _{max} (μg/ml)			T _{max} (h)			AUC ₀₋₈ (µg⋅h/ml)	
	Ν	Median (IQR)	p-value	N	Mean (SD)	p-value	N	Median (IQR)	p-value
Age group									
0-2 years	6	43.65 (42.20 - 49.20)		6	1.00 (0.00)		6	103.85 (96.80 - 119.10)	
2-5 years	7	49.10 (40.70 - 59.20)		7	1.14 (0.38)		7	124.15 (97.75 - 162.05)	
6-15 years	15	49.60 (40.30 - 56.40)	0,845	15	1.13 (0.35)	0,593	14	159.25 (124.20 - 179.48)	0,016
HIV status									
HIV-infected	10	47.05 (42.20 - 54.40)		10	1.10 (0.31)		9	151.00 (109.40 - 162.05)	
HIV-uninfected	18	46.85 (40.70 - 53.00)	0,719	18	1.11 (0.32)	0,931	18	128.65 (112.50 - 174.95)	0,918

Slide from A. Hesseling, See more second-line drug data later today Adult target values: C_{max}: <u>35-45</u> ug/ml

Hesseling, IUATLD 2014

Why HIV/TB Co-Treatment is harder in children than adults: Limited ART Options

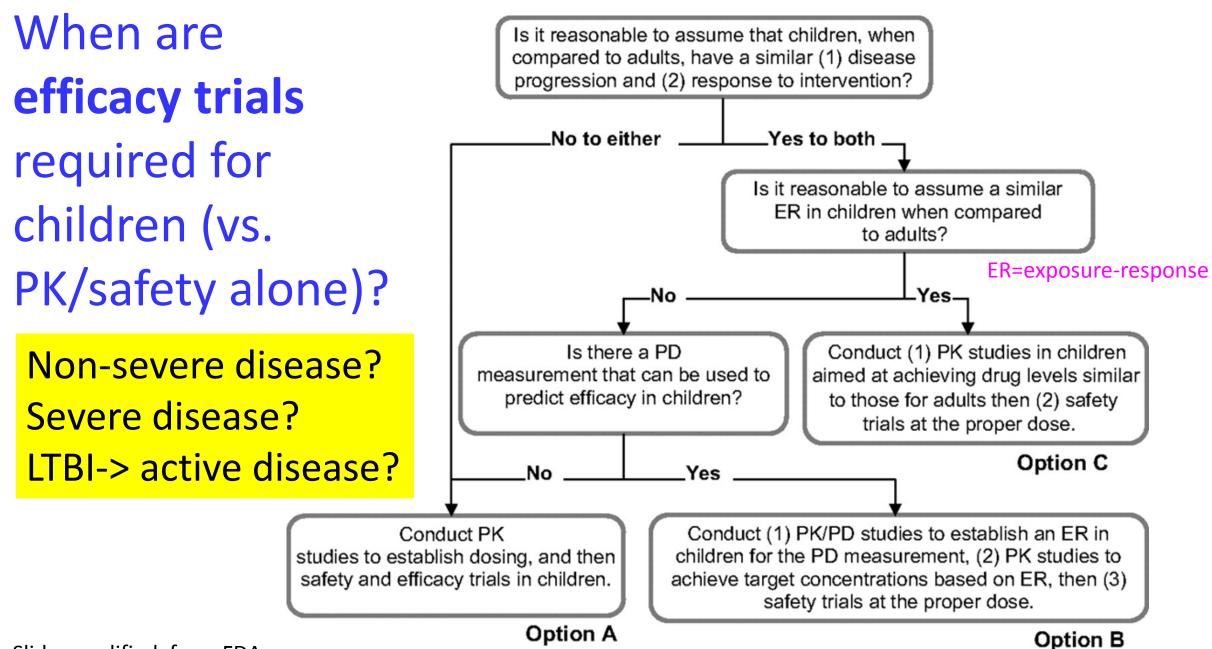
ART	Pediatric challenges
Nevirapine and efavirenz	Less efficacious in children < 1 year of age
Efavirenz	Dose not established for children < 3 years
Ritonavir-boosted protease inhibitors	Double dosing insufficient Rifabutin can't be substituted for rifampicin
Triple nucleoside regimens	May have higher risk failure in children because of high baseline viral loads
Integrase inhibitors	No drug interaction studies with raltegravir or dolutegravir with anti-TB Treatment in children

But children may have rapidly progressive HIV disease and they are at higher risk of severe TB....

Rifabutin dosing for children with TB/HIV co-infection taking PI-based ART- an example of *when toxicities in adults and children appear to differ*

J Antimicrob Chemother doi:10.1093/jac/dku382

Pharmacokinetics and safety of rifabutin in young HIV-infected children receiving rifabutin and lopinavir/ritonavir

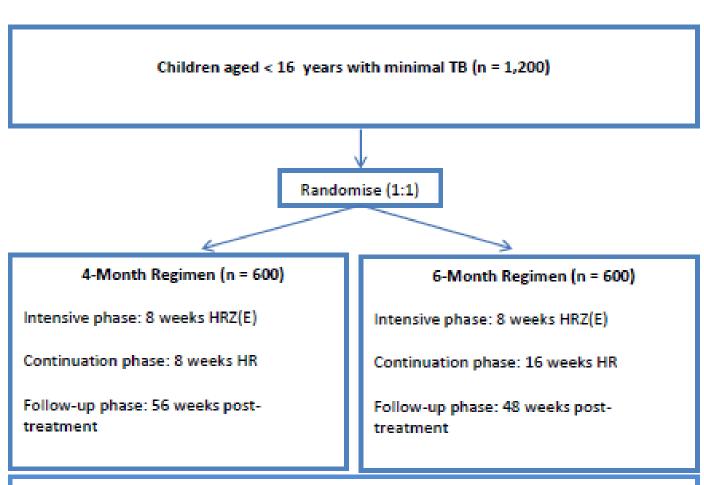

Harry Moultrie^{1*}, Helen McIlleron², Shobna Sawry¹, Tracy Kellermann², Lubbe Wiesner², Gurpreet Kindra¹, Hermien Gous¹ and Annelies Van Rie³

RBT 5 mg/kg three times a week in children < 5 years of age taking LPV/r Study stopped after 6 participants by IRB because of **severe, transient neutropenia**

> Safe rifabutin dose has not been established in children. Furthermore, there is no pediatric formulation

Moultrie et al JAC (2015) 70: 543.

Slide, modified, from FDA


Shortening TB treatment for children with minimal disease

Shorter treatment for minimal TB in children

A randomised trial of therapy shortening for minimal tuberculosis with new WHO-recommended doses/ fixed-dose-combination drugs in African and Indian HIV+ and HIV- children

- Parallel group, non-inferiority trial
- 4 vs. 6 months, open label
- Children aged 0-16 years
- Non-severe TB
- WHO-recommended doses first-line drugs
- N=1200 children
- New FDC; 75, 50, 150

All anti-TB drugs prescribed as per WHO 2010 dosing guidelines for each weight band. All ART (where applicable) will be prescribed according to country guidelines for each weight band.

PI=Di Gibb Multinational trial

Pediatric TB meningitis: are outcomes different in adults and children?

Can improved treatment change outcomes in children?

- Mortality lower in children than adults
- Plasticity of developing brain- neurologic outcomes may differ

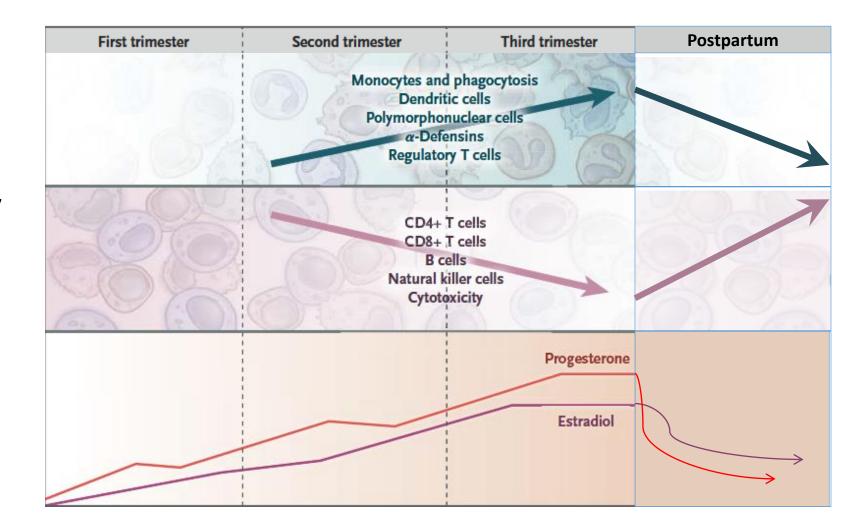
 How does TBM & its treatment affect neurocognitive development?

- Data are <u>sparse</u>
- Cognitive impairment
- Behavioral difficulties
- Emotional problems

What is going on in **children** already?

TB Research Area	Key studies
PK/safety studies <i>Standard first- and</i> <i>second-line drugs-</i> <i>Establishing doses</i> <i>that achieve adult-</i> <i>equivalent exposures</i>	 DATiC: PK/safety first-line TB drugs (enrolment to be completed 2016) STEP-TB: New pediatric dispersible formulations of first-line drugs Infant PK study (completed, disseminated, low Rif exposures; TBA) PK/safety of second-line drugs in children with and without HIV: MDR PK 1 (levo, moxi, oflox, amik, HD INH, ethio, PAS, cycloserine) MDR PK 2: Optimizing Levofloxacin, moxifloxacin, linezolid (NICHD) Rifabutin in children, NIRT OptiRIF Kids: high-dose rifampicin PK safety (TB Alliance)
PK/safety studies <i>New/investigational</i> <i>drugs</i> <i>Establishing doses</i> <i>that achieve adult-</i> <i>equivalent exposures</i>	 TBTC Study 35- Rifapentine/isoniazid in HIV+/-children < 12 years of age Bedaquiline in children– Janssen study in HIV-uninfected children; IMPAACT P1108 in children with and without HIV infection 232/233- Delamanid in children- Otsuka study; IMPAACT P2005 -injectable-sparing DLM-based regimen in children with and without HIV infection
HIV/TB DDI studies	 DNDi: Ritonavir boosting of LPV/r in TB/HIV NICHD: first-line TB drugs with ART (Awewura) P1101: RAL-based ART with standard TB drugs

1


Efficacy trials in children

TB Research Area	Key studies
TB prevention <i>Prevention of TB in children</i> <i>(higher risk of progression</i> <i>than adults)</i>	 TB-CHAMP: Levo vs placebo for MDR-TB prevention VQUIN: levo vs. placebo for MDR-TB prevention A5300 PHOENIX: delamanid vs. SD INH for MDR-TB prevention ACTG5279: one month of rifapentine+isoniazid daily for DS-TB prevention P4v9 Trial: 4 months RIF vs 9 months INH for DS-TB prevention TBTC 37: RPT 6 weeks vs. local SOC (RIF 4 mo or RPT/INH q week x 3 mo)
Severe disease Reduce mortality, neurocognitive dysfunction	 TBM-KIDS: High-dose RIF +/- Levo for children with TBM
Non-severe PTB and EPTB disease Reduce treatment duration for children with non-sevre disease	 SHINE: 4 vs. 6 months standard TB Rx (new FDCs, nested PK)

Specific priorities for <u>children</u> (TB)

TB Research Area	Priorities	Not being done/opportunities
Drug-sensitive TB	 PK/safety first-line drugs at higher doses, esp. infants Treatment shortening for all children (not just minimal disease) Optimal treatment for TB meningitis 	 Rifampicin pediatric formulation High-dose RIF for treatment shortening The "Stellenbosch regimen" (TB-SURE), host-directed therapy
Drug-resistant TB	 PK/dosing second-line drugs Shorter regimens (like "Bangladesh") New drug PK and safety (bedaquiline, delamanid, pretomanid, sutezolid) Injectable-sparing regimens 	 Modeling existing data, testing doses predicted to achieve PK targets Clofazimine in children, INH dose Safety/QT for BDQ+ DLM in children Most rely on BDQ, DLM or Pretomanid
Co-treatment TB/HIV	 Super boosting LPV/r in young children taking HRZE EFV-based regimen in children < 3 years INSTI-based ART with standard TB drugs (HRZE) RBT dose with boosted PI 	 EFV+HRZE in slow CYP2B6 genotype DTG-based ART with TB drugs RBT child-friendly formulation
Treatment LTBI	DS-TB preventionMDR TB prevention	 Daily RPT-based prophylaxis

- Pregnant women at higher risk of TB than peers, especially postpartum
- Higher risk of pregnancy complications with TB
 - For mother and her fetus/infant
- Pregnancy may impact TB drug disposition and safety

Adapted from Jyoti Mathad; Kourtis NEJM 2014

Specific priorities for pregnant women (TB)

TB Research Area	Current efforts	Gaps
Drug-sensitive TB	PK first-line drugs in pregnancy (P1026S)Tshepiso	Isoniazid, pyrazinamide, pyrazinamideHigh-dose rifamycins
Drug-resistant TB		 PK second-line drugs Substitution for injectables New drug safety/PK
Co-treatment TB/HIV		 EFV free drug exposures in pregnant women with EFV fast metabolizer genotypes taking TB Rx DTG in pregnant women with HIV/TB LPV/r+RBT in pregnant women with HIV/TB
Treatment LTBI	 IMPAACT 2001: INH/RPT once weekly for 12 doses P1078: INH antepartum vs. postpartum in women with HIV infection 	 Risk of newly-reported severe liver injury with efavirenz- impacts of pregnancy, post-partum state, isoniazid, EFV metabolizer genotype

Summary

- Pediatric TB, the "silent epidemic", increasingly recognized as a major global health concern, knowledge gaps about best treatments for children are substantial
- For some drugs/indications, studies to establish doses that achieve adultequivalent exposures (PK) plus safety of those doses is sufficient
 - Knowledge of developmental pharmacology, mathematical modeling can make these studies much more efficient
- Exposure-toxicity relationships, though, may differ in adults and children
- Efficacy studies may be needed when disease presentation, progression, and/or treatment response are likely to be different in children and adults
- Pregnancy increases risk of TB but best preventive therapy not yet established
- PK of most anti-TB drugs not established in pregnancy, yet they must be used
- Lots of work to do to improve treatment for drug-sensitive TB, drug-resistant TB, TB/HIV co-infection, LTBI in children and pregnant women

Thank you.

