

Imperial College London

Designing a MDR-TB Injectable Sparing Regimen in Children: Research Priorities, Design Considerations and Discussion

Tuberculosis Scientific Committee Meeting

Monday, 13 June 2016

H. Simon Schaaf

Professor in Paediatrics

Desmond Tutu TB Centre

South Africa

James Seddon

Clinical Lecturer

Imperial College London Anneke C. Hesseling

Professor in Paediatrics

Desmond Tutu TB Centre

South Africa

Outline

- Background
- Who to include
- Composition of control arm
- Composition of intervention arm
- Other questions and challenges

Considerations for study

• Entry points

- how to diagnose TB disease
- how to diagnose "MDR-TB"
- disease severity (deciding treatment regimen and treatment duration)
- End points/Treatment response (Outcomes)
 - Culture-confirmed or not (bacteriological cure vs. Rx completion)
 - Favourable vs. unfavourable outcomes
- Safety/tolerability
 - Adverse effects of drugs monitoring
- Microbiology

- Which lab bacteriology to use and how/when (e.g. Xpert only initial diagnosis)

Entry points – who should be included (1a)

Certainty of diagnosis and DST-patterns

- <u>DR-TB disease</u>: Clinical, radiological, or microbiological pathology, in combination with diagnosis of confirmed, probable, (or possible)
 DR-TB disease (Seddon et al JPIDS 2013)
- <u>Not TB infection only</u>, which should include children with positive bacteriology who have no clinical or radiological disease

Entry points – who should be included (1b)

Certainty of diagnosis and DST-patterns

- For research into paediatric DR-TB, it is important to describe the precise drug susceptibility test (DST) result:
 - Confirmed DR-TB: DST pattern of <u>child's isolate</u>
 - Presumed (probable) DR-TB: DST pattern of the likely source case(s)
 - Therefore not only the "category" (MDR/Pre-XDR/XDR) but full available DST result
 - Should possible DR-TB be included? (no DST result of child or source)
- <u>Only MDR-TB</u> and more, <u>or also RIF-mono-</u> <u>resistant</u>? What about incomplete results (GXP only)

Entry points – who should be included (2)

Age: 0-17 years

- Important to include adolescents different types of pulmonary disease, rarely studied
- Important to include infants immune system developing and different pharmacokinetics

HIV status

 Both HIV-uninfected and HIV-infected children should be included

Entry points – who should be included (3)

Types of TB

- Pulmonary TB yes
- Extrapulmonary TB yes, but not TB meningitis / miliary TB (?) unless certainty about regimen's drugs penetrating CSF?

Disease severity

- Very important consideration: severe and non-severe TB disease – could definitely influence treatment duration and treatment outcome
- Classification by Wiseman et al. (PIDJ 2013) or Shine-trial classification for non-severe disease

Control Arm – options

- Standard traditional 18 month 'WHO' regimen where every child receives the same regimen for the same duration
 - 6Am/Mfx or Lfx/Cyc orTzd/Eth/Z/H 12Mfx/Cyc/Eth/Z/H
 - ?Lnz ?Clof ?PAS (>MDR-TB)
- Clinician designed regimen based on WHO principles (4 active drugs plus Z) variable regimens for
 - Variable types of resistance
 - Variable types of severity
 - Treatment response
- 9-12 month regimen
 - 4-6Am/H/Eth/Clof/Mfx/E/Z +5-6Clof/Mfx/E/Z

Intervention arm principles

- In designing a regimen we need to consider the following when thinking about which drugs to include
 - Different mechanisms of action
 - Different mechanisms of resistance
 - Toxicity (also similar toxicity other drugs, e.g. mitochondrial tox with LNZ, BDQ, ARVs)
 - Distribution (penetration)
 - Interaction (other drugs)
 - Ease of use (children and healthcare programs)

Intervention arm thoughts (no injectable)

Duration?

Other Questions (to get more out of study)

- Drugs
 - Aspirin
 - Steroids
 - NAC (N-acetyl-cysteine)
 - Ibuprofen
 - Efflux pump inhibitors
 - Vitamin D
- Delivery
 - Inhaled therapy
- Other
 - Nutritional support
 - Psychosocial support

Opt out for individual children; Lnz or Lfx change to PAS or BDQ if intolerable/resistance?

Possible Trial 2

Role of BDQ if becomes available for children?

Trial implementation and uptake considerations

- Effective
- Safe
- Child friendly and program friendly (once daily dosing)
- Simplicity of regimen
- Monitoring for AE

STREAM: Regimens for Stage 2

Regimen A

Locally used WHO-approved MDR-TB regimen

- **Bedaquiline** added ٠
- Moxifloxacin replaced by levofloxacin
- Kanamycin dropped ٠
- **Bedaquiline** added ٠
- Moxifloxacin replaced by levofloxacin ٠
- Prothionamide dropped ٠
- Ethambutol dropped ٠

(modified Stage 1 study regimen, shortened)

Table 1. Planned or ongoing Phase 2 or 3 trials of MDR-TB treatment or preventive therapy

MDR-TB Treatment trials

MDR-TB Preventive therapy trials

Trial	Components of intervention arm	Trial	Components of intervention arm
NC005	PZA, BDQ, PTA	VQUIN	LFX
Opti-Q	LFX + standard of care	TB-CHAMP	LFX
STREAM II	BDQ, CFZ, EMB, PZA, LFX , INH, PTO	PHOENIx	DLM
NIX-TB	LZD , BDQ, PTA		
STAND	PZA, MFX, PTA		
NEXT-TB	PZA, LFX , ETO/hdINH, LZD , BDQ		
C208	BDQ + standard of care		
Trial 213	DLM + standard of care		
endTB	Combinations including LZD, BDQ, CFZ		

PZA-pyrazinamide; BDQ-bedaquiline; PTA-pretomanid; LFX-levofloxacin; EMB-ethambutol; MFX-moxifloxacin; PTO-prothionamide; CFZ-clofazimine; hdINH-high dose isoniazid; LZD-linezolid; ETO-ethionamide; DLM-delamanid

Slide: courtesy Anthony Garcia-Prats

Data gaps/Challenges

- Optimal and safe use of FQNs across age spectrum PK studies in progress: LFX and MFX (0-8 yrs)
- Optimal and safe use of LNZ (PK data pending) toxicity concerns – full duration of treatment (replace if AEs)
- Clofazimine PK and safety (planned IMPAACT capsule) Role of BDQ? (P1108 and Janssen study) – as data available to replace other drugs for resistance/toxicity?
- Role of BDQ/DLM co-treatment (planned IMPAACT capsule)
- Changing landscape: MDR-TB treatment guidelines, access programs
- Timing of inclusion wrt adult trials (adolescents)
- Formulations including clofazimine (gelcaps), FQNs

