Novel measures of adherence in PROMISE 1077BF

Adherence Working Group 30 May 2017

Pam Murnane PhD, MPH Monica Gandhi MD, MPH

> MPAACT International Maternal Pediatric Adolescent AIDS Clinical Trials Network

Outline

- The problem of adherence in PMTCT and other periods
- Novel approaches to adherence measurement
- Hair collection in PROMISE 1077BF
- Proposed analysis of adherence in pregnancy and postpartum in PROMISE
- Other analysis plans and opportunities using hair collected in 1077BF

Phase 3 PrEP trials: Adherence correlates with efficacy

Adherence (%) adjudicated by drug levels

SS Abdool Karim IAS 2014

Prior to universal ART/B+ -- 76% adherent in pregnancy and 53% postpartum

Adherence to antiretroviral therapy during and after pregnancy in low-income, middle-income, and high-income countries: a systematic review and meta-analysis

Jean B. Nachega^{a,b,c,d}, Olalekan A. Uthman^{e,f}, Jean Anderson^g, Karl Peltzer^{h,i}, Sarah Wampold^a, Mark F. Cotton^{d,j}, Edward J. Mills^k, Yuh-Shan Ho^l, Jeffrey S.A. Stringer^{m,n}, James A. McIntyre^{o,p} and

Lynne M. Mofenson^q

- Adequate adherence defined as $>80\% \rightarrow 100\%$
- Primary measures self-report or pill counts
- Viral load not measured

AIDS 2012. 26(16):2039-2052

The problem continues in the B+ era

- Adherence in Malawi¹
 - >=90% based on pharmacy refill in:
 - 73% in pregnancy
 - 66% 0-3 months postpartum, 75% 4-21 months
- Retention in Malawi²
 - Initiation at CD4 >350 in pregnancy increased risk LTF
 - 17% lost by 6 months (most within 3m)
- Viremia in South Africa³
 - Among women initiating ART in pregnancy who achieved suppression
 - 22% 1+ VL >1000 within 1y postpartum

PROMISE 1077HS (non-BF postpartum women, global)⁴

- ART initiation in pregnancy, CD4 >=400
- 23% VL failure (>1000 2x) & 15% discontinued ART
- Median 2.3y follow-up

1. Haas AD, CID 2016; 2. Tenthani L, AIDS 2014; Myer L, CID 2017; 4. Currier JS, PLoS One 2017

Novel approaches to measuring adherence in HIV treatment & prevention

Modified from Vrijens & Urquhart, 2005 Journal of Antimicrobial Chemotherapy.

Pros and cons of each measure

Subjective	Measure	Pros	Cons
	Self-report, questionnaires	 Easy Cost-effective Useful in clinical setting 	 Recollection bias Social desirability bias Inaccurate in many PrEP trials Cannot measure ingestion
	Pill counts	EasyQuantitative	Easy manipulated by patientCannot measure ingestion
	Medication event monitoring systems	 Somewhat objective Some with immediate wireless feedback 	 Cannot measure ingestion Large, cumbersome, expensive, interfere with medi-sets
	Pharmacy refills	More objective	 Expensive Cannot measure ingestion "White coat" adherence
	Pharmacologic measures	 Objective Short and long-term Measures ingestion 	Can be expensive
Objective	Directly observed therapy	 The best, only way to know 	Not practicalHiding pills

Pharmacologic measures of adherence

- Measuring drug in a "biomatrix"
 - plasma, PBMCs, dried blood spots (DBS), hair
- Assess both behavior (adherence) and biology (pharmacokinetics)
- Has proven essential in PrEP
 - Cannot measure viral loads in HIV-negatives
- Good for other prevention strategies employing meds
 - TB (latent or active)^{1,2}
 - PMTCT when measuring exposure of ARVs to infants

¹Gerona IJTLD 2016; ²Gandhi PLoS ONE 2016

PrEP trials, particularly those in women alone, highlighted the power of pharmacologic measures

Adherence Measure	VOICE	FEM-PrEP
Self-report	91%	95%
Returned pill counts	92%	88%
TFV detection in plasma	29%	24%

Marrazzo NEJM 2015; Van Damme NEJM 2012

Self-reported adherence higher than pharmacologic measure among pregnant women in South Africa

Adherence Measure	% adherent
Visual analog scale (100% past 3 days)	89%
4-day recall scale (100% past 3 days)	80%
DBS (TDF, EFV, 3TC \rightarrow 2+ drugs detected)	74%

Alcaide ML, AIDS Behav 2017

Plasma measures used most commonly, but short-term

PBMCs and DBS only relevant for drugs processed intracellularly (e.g. tenofovir and emtricitabine for PrEP)

"White coat" effect with short-term measures

- Adherence 1-3 days prior gives plasma levels close to steady state
- Study used MEMS caps monitoring & TDM to assess adherence
- Compliance improved immediately prior to visits, leading to "enhanced" drug levels (79% of pts with <95% adherence took meds days 3, 2 and 1 before visit)

Advantages (long and short of it) of hair levels as adherence/exposure measure

- Reflects long-term adherence
- Not subject to white-coat adherence
- Hair grows steadily in occiput at rate of ~1cm/month
- Hair shaft therefore a marker of time
- Hair easy and cheap to collect
- No special skills (no phlebotomy)
- Stored at room temperature
- Shipped without biohazard
- Feasible for resource-limited settings

Hair it is!

- Drugs of abuse
- Epilepsy medications (carbamazepine, tegretol, phenobarbital, ergotamine)
- TB latent and active treatment (INH)
- Organochlorine pollutants (DDT and biphenyl)
- Forensic analysis
 - Lead poisoning (Beethoven)
 - Arsenic (Napoleon)
 - Thallium, mercury, antimony (Newton)
- Stress cortisol levels

Beumer JH. Int J Clin Practice 2001; Williams J Therap. Drug Monitoring 2001; Covaci A. Chemospheres 2002; Flanagan RJ. Toxicol Rev 2005; Lugli A. Adv Anat Pathol. 2011; Thieme D. Forensic Sci Int. Mar 2007; Schoeman K.TDM 2010; Moller M. TDM 2010; Pelander A. TDM 2008; Karlen J. BMC Clin Pathol. 2011; Eisenhut M. Tuberc Res Treat. 2012; Gandhi M. Ann Intern Med 2002; Baciu T. Analytica Chimica Acta 2015

Baby Hair

- Drug exposure in utero
 - Scalp hair at birth reflects exposure in 3rd trimester
 - Cord blood, plasma, urine recent exposure
 - Cord tissue long term exposure but assays not well studied
 - Meconium long term exposure, collection/contamination issues
- Infant hair replaces neonatal hair at 3 months of life
- PROMOTE PK study paired mom-baby hair & plasma
 - EFV, LPV, RTV all detectable in mom and baby at birth
 - Only EFV detected in baby plasma at 12 weeks (BF transfer)

Gandhi 2013 JAIDS

Hair collection acceptable to HIV-infected women in South Africa

NIH Public Access Author Manuscript

Future Virol. Author manuscript; available in PMC 2013 September 01.

Published in final edited form as: *Future Virol.* 2012 November 1; 7(11): 1135–1142. doi:10.2217/fv1.12.100.

Reactions, beliefs and concerns associated with providing hair specimens for medical research among a South African sample: a qualitative approach

Bronwyne Coetzee¹, Ashraf Kagee¹, Mark Tomlinson¹, Louise Warnich^{2,*,‡}, and Ogechi Ikediobi^{3,‡}

- 21 women, Western Cape, South Africa
- Cultural beliefs influence decision to donate hair, but willing when provided enough information by researcher

Hair collection in rural Kenya suggested social desirability bias in self-report

Antiretroviral Concentrations in Small Hair Samples as a Feasible Marker of Adherence in Rural Kenya

Matthew D. Hickey, BS,*†‡ Charles R. Salmen, MPhil (Oxon),*†‡ Robert A. Tessler, MD,§ Dan Omollo, BSc,† Peter Bacchetti, PhD, || Richard Magerenge,† Brian Mattah,† Marcus R. Salmen, MD,† Daniel Zoughbie, MSc, DPhil (Oxon),‡ Kathryn J. Fiorella, MPH,†¶ Elvin Geng, MD, MPH,* Betty Njoroge, MBChB, MPH,# Chengshi Jin, PhD, MS,|| Yong Huang, PhD,** Elizabeth A. Bukusi, MBChB, MMed (ObGyn), MPH, PhD, PGD (Ethics),#††

Craig R. Cohen, MD, MPH, †† and Monica Gandhi, MD, MPH*

Age 18-78; 64% women

- Among consented, 95% donated hair
- Self-reported adherence high (IQR 96-100%)
- Wide variation in NVP hair concentrations
 - Suggests over-reporting
 - (No VL measured)

Hair concentrations of EFV & LPV predict viral suppression pregnancy & postpartum

Hair concentrations of antiretrovirals predict viral suppression in HIV-infected pregnant and breastfeeding Ugandan women

Catherine A. Koss^{a,b}, Paul Natureeba^b, Julia Mwesigwa^{b,c}, Deborah Cohan^{b,d}, Bridget Nzarubara^b, Peter Bacchetti^e, Howard Horng^f, Tamara D. Clark^{a,b}, Albert Plenty^{b,g}, Theodore D. Ruel^{b,h}, Jane Achan^{b,c}, Edwin D. Charlebois^{b,g}, Moses R. Kamya^{b,i}, Diane V. Havlir^{a,b} and Monica Gandhi^{a,b}

• Hair collected 30–34 weeks gestation & 10–25 weeks postpartum

- Concentrations of EFV and LPV both predicted VL suppression
 - At delivery
 - At 24 weeks postpartum

Limitations of long-half moieties

- Represents averaged adherence, cannot determine dosing patterns
- Inter-individual variability leads to overlap in adherence categories (misspecification).

Slide courtesy Pete Anderson CROI 2016

Real-time feedback devices

- Many MEMs devices need downloading centrally
- Some have wireless chip e.g.
 Wisepill®
- RCT in patients on ART (China¹) examined real-time reminders if doses >30 min late
 - 87.3% vs 51.8% optimal adherence with intervention (RR 1.7 (1.3-2.2)) BUT adherence measure self-referential, no pharmacologic measure to confirm ingestion, No improvement in viral loads
- Similar finding in Uganda cohort²
- Perhaps Wisepill findings best verified by pharmacologic measures

¹Sabin LL. JAIDS 2015; ²Haberer AIDS 2016

Low cost point-of-care measures of adherence next frontier

 NVP in hair using thinlayer chromatography (TLC), cheap but not real-time

 Colorimetric assays for TFV –cheap but still labor-intensive, competing endogenous compounds

Immunoassays
common for
urine/saliva
drugs of abuse;
Antibodies
expensive and
can be
challenging but
hopeful (working
with Alere)

Gandhi M. ARHR 2014

Novel measures - Summary

- PrEP efficacy trials dramatically illustrated limitations of self-reported adherence
- PMTCT can be time of flux and social desirability bias
- Plasma most common pharmacologic measure, but only measures recent use
- Hair is easy to collect, measures long term exposure
- Electronic monitoring detailed dosing history, but does not measure ingestion
- Going forward: Low-cost, point-of-care measures feasible for broad scale-up are needed

Promoting Maternal and Infant Survival Everywhere

Hair collection in PROMISE

PROMISE 1077BF components

- BA: Antepartum component (Fowler NEJM 2016)
 - Pregnant women with CD4 >=350
 - ZDV alone vs 3TC/ZDV/LPV/r vs TDF/FTC/LPV/r
- BP: Postpartum
 - From antepartum (any arm) + late presenters where BF is standard
 - Daily infant NVP vs Maternal ART through BF or 18m
- BM: Maternal Health
 - Mothers on ART -- from BP, and from BA (ineligible for BP) -randomized to continue or discontinue ART

Hair collected in PROMISE 1077BF

Mom and baby hair samples in UCSF Hair Analytical Laboratory (HAL)

	N	Median	IQR	Range	Total number of samples
Moms	786	5	2-8	1-19	4251
Babies	766	8	3-10	1-14	5325

- All 766 babies in the table above are paired to mothers with hair collected
- An additional 577 babies had hair collected (without paired maternal hair), primarily from the postpartum infant NVP arm

Maternal ART adherence

Proposed analysis in PROMISE 1077BF

Sampling plan for PROMISE analysis

		Ν
Antepartum arm	Postpartum arm	moms
Antepartum ART	Maternal ART	361
Late presenter/		
ZDV only	Maternal ART	293

- Randomly sample from mothers randomized to ART
- Over-sample key risk factors that may be underrepresented

Risk factors for poor adherence measured longitudinally in PROMISE

- Known risk factors from the literature
 - Disclosure to spouse/others in household
 - Food insecurity
 - Alcohol use
 - SES (education, household characteristics, household income sufficient for needs, mother working)
- Detailed breastfeeding history

Detailed mental health/stigma was not systematically evaluated

Summary of hair collection after breastfeeding cessation

			N
ART summary	N moms	Months BF Median (IQR)	moms with 1+ hair post BF
Antepartum & PP	361	15 (12-17)	166
Postpartum only	293	14 (12-16)	138

Adherence analysis plan

- Describe adherence trajectories during
 - Pregnancy
 - Breastfeeding
 - At breastfeeding cessation & post BF
- Assess the impact of time on ART vs. transitions (pregnancy, BF, post BF)
- Evaluate longitudinal risk factors for poor adherence throughout each stage

Other analyses with PROMISE hair

- Baby seroconversions during breastfeeding
- Assess maternal ART transfer to baby with the ratio of maternal hair concentration : baby hair concentration
 - Implications for PMTCT, infant exposure, infant toxicities
- PK study of multiple biomatrices of drug levels in mom and baby hair (n=50)
- Proposals from IMPAACT investigators are encouraged
 - ~12K PROMISE hair samples in UCSF Lab
 - A resource for all!

International Maternal Pediatric Adolescent AIDS Clinical Trials Network

Thank you to

IMPAACT study leadership

- Mary Glenn Fowler, MD MPH
- Judy Currier, MD
- Patricia DeMarrais SDAC
- Sean Brummel SDAC

PROMISE study participants for study participation and hair donation

Support for the PROMISE Hair Substudy is from NIAID R01 Al098472 Pls: Monica Gandhi and Judy Currier Karen Kuncze, QA/QC

Nhi Phung, RA

Alex Louie, SRA

Howard Horng PhD, Lab

