

Differences in Gut Microbiome in HIV-Infected versus HIV-exposed, Uninfected Infants

#788

AIDS RESEARCH

JOHNS HOPKINS

Wei Li A. Koay^{1,2}, Hyunwook Koh³, Mutsa Bwakura-Dangarembizi⁴, Adriana Weinberg⁵, Myron J. Levin⁵, Ni Zhao³, Deborah Persaud⁶

Fig 2b.NBF vs BF

0.2

0

-0.4

Yes

Bray-Curtis

0.0 0.2 0.4

PCoA 1

0.004

Weighted UniFrac

No

0.0 0.2 0.4

PCoA 1

Jaccard

Yes

PCoA 1

° 0.001

Unweighted UniFrac

00 01 02 03

PCoA 1

-0.2 0.0 0.2 0.4

¹Division of Infectious Diseases, Children's National Medical Center, Washington DC, USA; ²School of Medicine and Health Sciences, George Washington University, Washington DC, USA; ³Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; ⁴Colleges of Health Sciences, University of Zimbabwe, Harare, Zimbabwe; ⁵Division of Infectious Diseases, University of Colorado School of Medicine, Denver, CO, USA; ⁶Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA

BACKGROUND

- Increased inflammation and immune activation are features of HIV-1 infection, for which gut dysbiosis is implicated in adults with HIV.
- Little is known about the gut microbiome in HIV-1infected (HIV+) infants, who also have persistent inflammation and immune activation.
- Our previous studies show that markers of intestinal integrity (zonulin, intestinal fatty acid binding protein) do not differ between HIV+ and HIV-exposed uninfected (HEU) infants at 3 months of age, but HIV+ infants had higher concentrations of cytokines (IFN γ , IL1- β , IL-2, IL-6, IL-8, IL-10, TNF α) compared with HEU infants.
- Using residual stool extracts from a rotavirus vaccine trial in sub-Saharan Africa (IMPAACT P1072), we profiled fecal bacterial populations to define HIVassociated gut dysbiosis in HIV+ and HEU infants at 3 months of age, who were breastfed (BF) and nonbreastfed (NBF).

METHODS

- 40 infants (20 HEU, 20 HIV+) on co-trimoxazole prophylaxis were selected from a rotavirus vaccine trial, in whom we previously characterized inflammation, immune activation and intestinal integrity markers profiles.
- Infants were selected based on stool availability and breastfeeding with matched HEU control infants.
- 16S rRNA (V3V4) sequences from stool DNA were assigned organizational taxonomic units (OTU) with QIIME.
- Alpha (Chao1, abundance coverage estimator (ACE), Shannon, Simpson) and beta (Bray-Curtis, Jaccard, unweighted and weighted UniFrac) diversity, and differentially abundant taxa (linear discriminant analysis effect size (LEfSe)) were analyzed.
- Multivariate analysis adjusted for HIV status, breastfeeding and gender (results not shown).
- p<0.05 indicated statistical significance.

ACKNOWLEDGEMENTS: Dr. Persaud funded by NIH (R01 HD080474), Johns Hopkins University (JHU) Center for AIDS Research (CFAR) (P30AI094189), BELIEVE (INAID AI126617); Dr. Koay funded by JHU School of Medicine Physician Scientist Training Program, T32 (AI052071), DC CFAR (AI117970). Overall support for IMPAACT provided by NIAID (UM1AI068632, UM1AI068616, UM1AI106716), with co-funding from the NICHD. We thank Jane Lindsey for her assistance with the data, and the site investigators and staff who conducted the P1072 study.

Table 1a. Characteristics of participants by HIV-1 infection status											
	HEU		HIV+			HEU	HIV+		HEU	HIV+	
	Male, n (%)	Female, n (%)	Male, n (%)	Female, n (%)	p-value	CD4%, m	edian (SD)	P-value WHO weigh score, me		nt-for-age Z- edian (SD)	p-value 0.042 0.307
Total	10 (52.6)	9 (47.4)	4(20)	16 (80)	0.048	39.9 (7.8)	32.5 (12.3)	0.032	-0.52 (0.86)	-1.1 (1.33)	0.042
Non- breastfed	6 (66.7)	3 (33.3)	4 (40)	6 (60)	0.37	42.8 (7.7)	35.6 (14.6)	0.211	-0.2 (0.76)	-0.69 (1.38)	0.307
Breastfed	4 (40)	6 (60)	0 (0)	10 (100)	0.087	37.3 (7.3)	29.5 (9.1)	0.059	-0.81 (0.89)	-1.52 (1.21)	0.143

Table 1b. Characteristics of participants by breastfeeding status

Bray-Curtis

0.0 0.2 0.4

00 02 04

PCoA 1

0.14

Weighted UniFrac

HEU

P HEHIV+

-0.4

Fig 2a. HEU vs HIV+

Jaccard

PCoA 1

<.00

Unweighted UniFra

0.0 0.1

02 03

-0.2 0.0 0.2 0.4

62

	Non-breastfed (NBF)		Breastfed (BF)			NBF	BF		NBF	BF	
	Male, n (%)	Female, n (%)	Male, n (%)	Female, n (%)	p-value	CD4%, me	edian (SD)	p-value	WHO weight-for-age Z- score, median (SD)		p-value
Total	10 (52.6)	9 (47.4)	4 (20)	16 (80)	0.048	39.0 (12.1)	33.4 (9.0)	0.06	-0.46 (1.13)	-1.16 (1.1)	0.144
HEU	6 (66.7)	3 (33.3)	4 (40)	6 (60)	0.37	42.8 (7.7)	37.3 (7.3)	0.153	-0.2 (0.76)	-0.81 (0.89)	0.182
HIV+	4 (40)	6 (60)	0 (0)	10 (100)	0.087	35.6 (14.6)	29.5 (9.1)	0.19	-0.69 (1.38)	-1.52 (1.21)	0.405
SETA DI	VERSITY:									•	

Fig 1. a: HEU (green) vs HIV+ (red). Chao1 and ACE (both take into account the number of species or richness), but not Simpson or Shannon (both take into account abundance of species and richness), show significantly higher α -diversity in HIV+ compared with HEU. b: NBF (green) vs BF (red). All measures show significantly lower α -diversity in BF compared to NBF infants. DIFFERENTIAL ABUNDANCE:

Fig 2. a: HEU (O) vs HIV+ (Δ). Jaccard and unweighted UniFrac (both not abundance based), but not Bray-Curtis or weighted UniFrac (both abundance based) showed significant difference between HEU and HIV+. b: NBF (O) vs BF (Δ). All measures of beta diversity show significant difference between NBF and BF infants.

2

-0.2

CONCLUSIONS

- Significant differences between the microbiome of HEU and HIV+ infants from sub-Saharan Africa are observed.
- Although multivariate analysis did not show an impact of breastfeeding and gender, effect changes may not be evident due to the small sample size.

Fig 3. Differentially abundant microbial taxa through phylum, class, order, family and genus for **a. HEU (red) vs HIV+ (green)**, where taxa enriched in HEU infants are shown in red and taxa enriched in HIV+ are shown in green and **b. NBF (red) vs BF (green)**, where taxa enriched in NBF infants are shown in red, and taxa enriched in BF infants are shown in green.

REFERENCES: Hunt PW, Sinclair E, Rodriguez B, et al. J Infect Dis. 2014; 210: 1228-38. Levin MJ, Lindsey JC, Kaplan SS, et al. AIDS. 2017;31:49-59. Koay WLA, Lindsey JC, Uprety P, et al. J Infect Dis. 2018;218(7):1085-9.

RESULTS