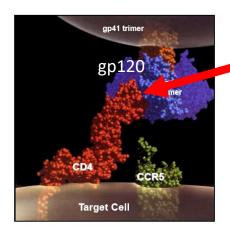
Safety & Pharmacokinetics of Monoclonal Antibody VRC01LS in HIV-Exposed Newborns

Elizabeth McFarland, Coleen Cunningham, Edmund Capparelli, Petronella Muresan, Elizabeth Smith, Charlotte Perlowski, Leavitt Morrison, Patricia Morgan, Adrian McDermott, Rohan Hazra, John Mascola, Barney Graham, and the IMPAACT P1112 Team


Mother-to-child transmission of HIV

- Maternal and infant ART has resulted in considerable progress to reduce transmission.
- However, an estimated 180,000 children were newly infected in 2017; 90% in Africa¹.
- Continued transmission is due to:
 - Women not diagnosed during pregnancy
 - Incomplete ART adherence during pregnancy or while breastfeeding
 - Women acquiring HIV while breastfeeding
 - Drug resistant virus
- To eliminate transmission to infants, additional strategies are needed.

Passive immunization is a potential strategy to interrupt transmission

- Hepatitis B mother-to-infant transmission prevented with HBIG.
- HIV-1 specific broadly neutralizing monoclonal antibody protection in non-human primates (NHP).
 - Prevention from SHIV transmission via rectal challenge in adults and juvenile NHP ¹
 - Prevention from SHIV transmission via oral challenge in neonatal NHP²
- AMP study (HVTN/HPTN) enrolled and in follow-up
 - Phase 2b study of VRC01 for HIV prevention adults.

Broadly neutralizing anti-CD4 binding site monoclonal antibody: VRC01

CD4 binding site on gp120 is functionally conserved: All viruses must bind CD4

Clade B (n=25)

С	lad	e A	A (n=	24
_		•	٠,		

Clade C (n=32)

	VRC01	b12
JRFL	0.029	0.022
YU2	0.081	2.18
89.6	0.178	0.14
6101.10	0.025	>50
7165.18	16.3	>50
6535.3	0.173	0.429
QH0692.42	0.284	0.97
SC422661.8	0.035	0.44
PVO.4	0.252	>50
TRO.11	0.071	>50
AC10.0.29	0.845	1.8
RHPA4259.7	0.014	0.12
THRO4156.18	1.78	1.21
REJO4541.67	0.014	5.92
TRJO4551.58	0.054	>50
WITO4160.33	0.028	8.54
CAAN5342.A2	0.635	>50
BL01.DG(5)	>50	1.650
BR07.DG	0.342	0.096
HT593.1	0.213	0.117
R2	0.235	1.170
BG1168.01	0.276	>50
QH0515.01	0.294	0.300
5768.04	0.033	0.249
3988	0.134	0.378

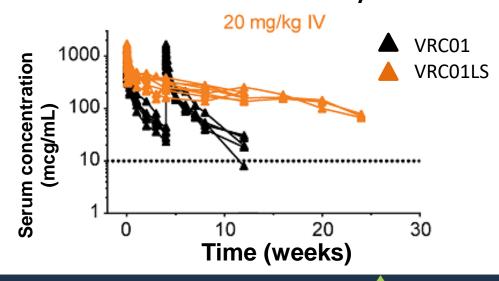
	VRC01	b12	
RW020.2	0.182	10.1	
UG037.8	0.081	>50	
DJ263.8	0.143	0.812	
KER2018.11	0.436	>50	
Q259.w6	0.274	>50	
Q769.h5	0.027	>50	
Q168.a2	0.086	>50	
Q23.17	0.038	>50	
Q259.17	0.031	>50	
Q461.e2	0.165	>50	
Q842.d12	0.017	>50	
BB201.B42	0.118	0.358	
MB201.A1	0.062	>50	
MB201.B10	0.093	>50	
BB539.2B13	0.049	0.624	
MB539.2D1	0.021	0.476	
MB539.2B7	0.333	11.6	
B1369.9A	0.062	28.9	
MI369.A5	0.400	4.05	
BS208.B1	0.017	0.042	
MS208.A1	0.071	0.201	
MS208.A3	0.029	0.505	
KER2008.12	0.457	>50	
KNH1209.18	0.059	0.227	

Clade C (n=32)				
	VRC01	b12		
Du123.6	10.1	1.82		
Du151.2	6.55	3.79		
Du156.12	0.037	0.656		
Du172.17	>50	0.3		
Du422.1	>50	0.464		
ZM197M.PB7	0.105	>50		
ZM214M.PL15	0.277	13.6		
ZM233M.PB6	1.2	>50		
ZM249M.PL1	0.035	3.81		
ZM53M.PB12	0.604	32.6		
ZM109F.PB4	0.073	>50		
ZM135M.PL10a	0.422	>50		
CAP45.2.00.G3	0.279	0.37		
CAP210.2.00.E8	>50	27		
CAP244.2.00.D3	0.326	>50		
ZA012.29	0.087	>50		
BR025.9	0.115	>50		
ZM215.8	0.095	>50		
ZM106.9	0.259	>50		
ZM55.28a	0.340	>50		
ZM53.21	0.390	9.54		
ZM55.4a	0.450	32.6		
ZM106.10	0.189	>50		
ZM109.32	0.091	>50		
ZM135.8a	0.374	>50		
ZM146.7	0.333	18		
ZM176.66	0.055	>50		
ZM181.6	1.120	>50		
SO18.18	0.069	13.9		
286.36	0.188	0.701		
288.38	0.992	>50		
TZA125.17	>50	>50		

Red: <1 μg/ml

Yellow: >/= 1 ug/ml and < 10 μg/ml

Green: >/= 10 μg/ml and < 50 ug/ml


VRC01LS: Increased affinity for neonatal Fc-receptor increases mAb half-life

 Two amino acid substitutions (M428L/N434S) result in increased affinity for the neonatal Fc-receptor at low pH and recirculation of functional IgG.

These changes also result in increased antibody at

mucosal surfaces.

 In adults, this results in a dramatic increase in half-life.

IMPAACT P1112: Study Overview

Open label, dose-escalating, phase I study of safety and pharmacokinetics of single and multiple subcutaneous (SC) doses starting at birth

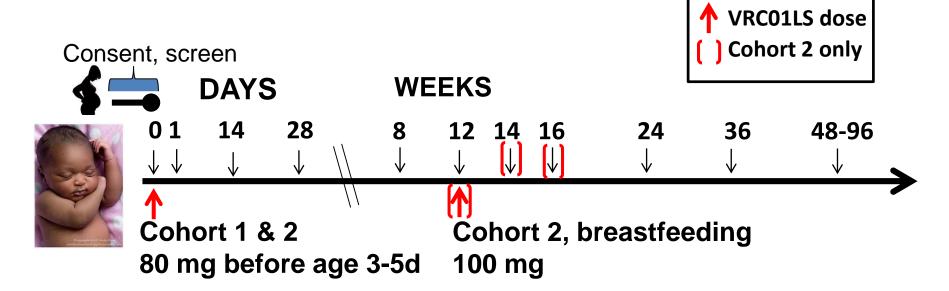
VRC01 (VRC-HIVMAB-060-00-AB)

- Dose group 1¹ (N=13 non-breastfed)
 - Birth dose 20mg/kg
- Dose group 2¹ (N=14, non-breastfed)
 - Birth dose 40mg/kg
- Dose group 3² (N=13, breastfed)
 - Birth dose 40mg/kg
 - Monthly dose 20mg/kg

VRC01LS (VRC-HIVMAB-080-00-AB)
Dose group 4

- Cohort 1 (N=10, non-breastfed)
 - Birth dose weight bands

```
Wt <4.5 kg: 80mg
Wt > 4.5 kg: 100mg
```


- Cohort 2 (N=11, breastfed)
 - Birth dose weight bands

```
Wt <4.5 kg: 80mg
Wt > 4.5 kg: 100mg
```

- 12 week dose 100mg
- 1. Cunningham et al. Abstract 760; CROI 2017, Seattle, WA
- 2. Cunningham et al. Abstract 0A08.05; HIV R4P 2018, Madrid, Spain

IMPAACT P1112 Dose Group 4: study schedule

- HIV-exposed infants
 - ALL infants receive ART to prevent perinatal/breastmilk transmission
 - Followed on study 96 weeks
 - Primary objectives are safety and PK

Safety and PK

Dose Group 4: Baseline characteristics

	Cohort 1 (non-breastfed) N= 10	Cohort 2 (breastfed) N= 11	Total N= 21
Site African* United States	3 (30%) 7 (70%)	11 (100%)	14 (67%) 7 (33%)
Age (days) Weight (grams)	2 (<u>+</u> 0.9) 3123 (+ 534)	2.4 (<u>+</u> 0.8) 2948 (+ 381)	2.2 (<u>+</u> 0.9) 3031 (+ 457)
Infant ARV One drug (NVP or ZDV) Combination	7 (70%) 3 (30%)	11 (100%)	18 (86%) 3 (14%)
Received VRC01LS Dose 1 Dose 2	10 (100%) NA	11 (100%) 10 (91%)	21 (100%) 10 (91%)

^{*} South Africa and Zimbabwe

IMPAACT P1112 Dose Group 4: Current status

- Enrollment between Jan 2017-Feb 2018.
- All infants (N=21) received 1st dose; 10 infants received 2nd dose.
- No Grade 3 or 4 adverse events related to VRC01LS.
- No infants stopped study treatment due to adverse events.
- Ongoing follow-up (N=18) through Feb 2020.
 - Cohort 1 two infants discontinued at 2 and 4 weeks¹
 - Cohort 2 one infant discontinued at 22 weeks²

² Withdrew consent

Dose Group 4: Local Reactions

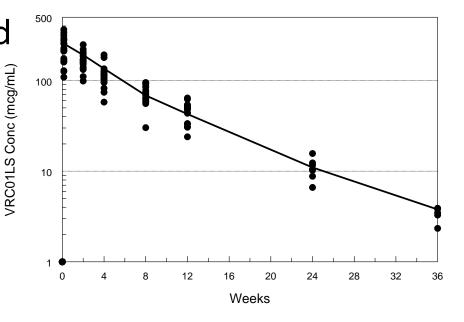
Local reactions were common, especially with the first dose; almost all mild and resolved within hours

	Cohort 1: dose 1 (n=10)	Cohort 2: dose 1 (n=11)	Cohort 2: dose 2 (n=10)
Volume per site, mean (min/max)	0.8 mL (0.8/0.8)	0.6 mL (0.4/0.8)*	0.6 mL (0.3/1.0)*
% of children with any reaction^	50%	82%	20%
Grade mean (min/max)&	1 (1/1)	1 (1/1)	2 (2/2)
Resolution by 1 hr	60%	89%	0%
Resolution by 24 hr	100%	100%	100%

^{*} Some infants received dose split across two injection sites

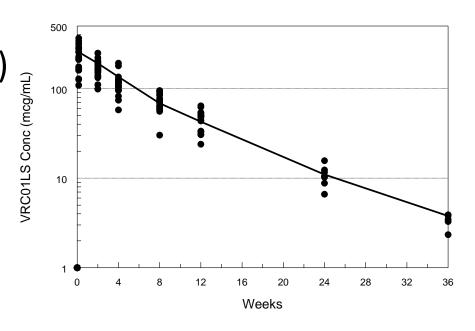
[^] Erythema 9-55%; edema 10-45%, induration 0-20%, bruising: 1 infant

[&] Reaction size: most 1-2 cm; maximum 3.5 cm


VRC01LS Infant PK parameters First Dose: 80mg SC (n=21)

 Preliminary PK Parameters (mean <u>+</u> sd)

 $- Vd/F: 0.121 \pm 0.007 L/kg$


 $- CL/F: 1.45 \pm 0.23 \text{ mL/kg/d}$

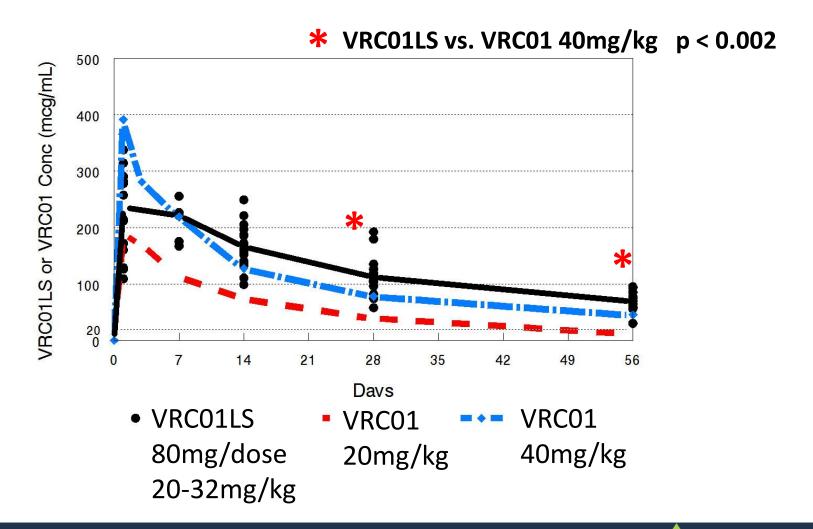
 $-T_{1/2}$: 59 ± 8 days

VRC01LS Infant PK Day 1 and Week 12

- Day 1
 - Mean (SD) 222 (<u>+</u> 72) mcg/mL
 - >100 mcg/mL 100%
- Week 12
 - Mean (SD) 44.72 (<u>+</u> 11.44)
 mcg/mL
 - > 50mcg/mL 33%
 - > 20mcg/mL 100%

VRC01LS PK parameters infants vs. healthy adults

Newborn (birth dose, SC)


Preliminary PK
 (mean <u>+</u> sd)
 T_{1/2}: 59 <u>+</u> 8 days

Healthy adults ¹ (averaged for IV and SC)

PK Parameters
 (mean <u>+</u> sd)
 T_{1/2}: 71 <u>+</u> 18 days

¹Gaudinski et al. Plos Med; 2018

Infant PK parameters VRC01LS vs. VRC01: 1st dose PK

In conclusion

- VRC01LS is well tolerated.
- VRC01LS can be administered at birth and 1-2 times per year to achieve desired levels.
- Broadly neutralizing antibodies are feasible as an additional strategy to prevent mother-to-child transmission of HIV in infants at increased risk of HIV transmission.

Next steps:

- New agents
 VRC07-523LS increased potency & breadth (IMPAACT P1112)
- Studies of bNAb as adjunct to ART for neonatal HIV prevention and early treatment
 (IMPAACT 2008; IMPAACT P1115)

Acknowledgements -Thanks to:

The International Maternal Pediatric Adolescent AIDS Clinical Trials Network

The P1112 Team (an awesome team)

Thanks to: Vaccine Research Center: Barney Graham, John Mascola, Julie Ledgerwood for slides and data


Sites

FAMCRU Cape Town Harare Family Care Bronx-Lebanon Hospital, NY Univ California, LA **Emory University** University of Puerto Rico Jacobi Med. Ctr., NY Johns Hopkins University San Juan City Hospital South Florida, Ft Lauderdale Texas Children's Hosp. University of Colorado University of Florida

Thanks to:
The parents
and infants
for participating

Extra slide: PK methods

The data were fit to one and two compartment population PK models using the computer program NONMEM (ver 7.3). Empiric Bayesian estimates of the individual participants PK parameters were generated using the POSTHOC subroutine. The mean +/-sd parameter values represent the summary statistics for these empiric Bayesian values. The mean of the individual Bayesian values and the typical population model values were nearly identical. The one compartment model was sufficient to describe the data, in other words the two compartment model did not improve the overall fit of the data (and generated a nearly identical t1/2 to the one-compartment model). The ability of a one compartment model to fit the data as well as a two compartment model in infants is likely due to the SC administration and limited early PK samples (Day 1 then Week 2).