Prevalence and Dynamics of Drug Resistance During Dolutegravir-Containing Treatment in a Pediatric Population Living with HIV-1 (IMPAACT P1093)

Ceejay L. Boyce¹, Marley D. Bishop¹, Sheila M. Styrchak¹, Kevin Knowles², Cindy Vavro³, Rohan Hazra⁴, Ellen Townley⁵, Robert A. Smith⁶, Geoffrey S. Gottlieb^{6,7}, Stephen E. Hawes⁸, Paul K. Drain⁷, Theodore D. Ruel⁹, Andrew A. Wiznia¹⁰, Lisa M. Frenkel^{1,6,7,11}, and the IMPAACT P1093 Team

1 Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; 3 ViiV Healthcare, Durham, North Carolina, USA; 3 ViiV Healthcare, Durham, North Carolina, USA; 4 Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD, USA; 6 Department of Medicine, University of Washington, Seattle, WA, USA; 7 Department of Global Health, University of California San Francisco, California, USA; 7 Department of Global Health, University of Washington, Seattle, WA USA; 7 Department of Global Health, University of Washington, Seattle, WA USA; 7 Department of Global Health, University of Washington, Seattle, WA USA; 7 Department of Global Health, University of Washington, Seattle, WA USA; 9 University of Washington, Seattle, WA, USA; 9 University of Washington, Seattle, WA

Introduction

- IMPAACT P1093 is a phase I/II study of dolutegravir (DTG) and optimized background therapy (OBT) in children (4 weeks to <18 years) living with HIV-1
- A secondary objective of the study is to assess changes in HIV-1 genotypes and phenotypes to DTG and OBT in children with and without intermittent viremia or protocol-defined virologic failure

Methods

- This study included all 181 children enrolled in P1093 from nine countries in Africa, Americas, and Asia
- Protocol-defined virologic failure (PDVF) = two consecutive viral loads >400 c/mL after 24 weeks on study
- Intermittent viremia = ≥2 viral loads >400 c/mL after 24 weeks on study
- Plasma HIV RNA genotyping was performed on screen/enrollment specimens for all (N=181) and longitudinal specimens from participants with PDVF/intermittent viremia (N=49) using PacBio sequencing (Figure 1)

Results

Selected DTG-Associated Resistance:

- PDVF/intermittent viremia occurred in 49/181 (27.1%) participants n=46 and n=3, respectively with a median viral load of 5,644 c/mL (IQR: 1,469-37,891 c/mL)
- DTG-associated mutations were detected in 9/49 (18.4%) at ≥20% cut-off, 11/49 (22.5%) at ≥5% cut-off, and 12/49 (24.5%) at ≥1% cut-off (**Table 2**)
- Phenotypic analyses of 10 participants' genotypes found reduced DTG susceptibility in 7/7 participants with major INSTI mutations and similar DTG susceptibility in 3/3 participants with no or accessory only INSTI mutations compared to screen/enrollment (Table 3)
- Selection of DTG-associated mutations at viremia trended towards increased viral suppression <400 c/mL (OR 1.53, 95% CI 0.71-3.30, p=0.28) and was significantly
 associated with increased viral suppression <40 c/mL (OR=2.15, 95% CI 1.02-4.52, p=0.043) compared to no selection of DTG resistance (Figure 3)

Table 2: Participants with dolutegravir-associated mutations detected at PDVF/intermittent viremia

PID	Age at Entry (yrs)	Pre-DTG Genotype*	OBT	Visit Week**	Viral Load (c/mL)	Subtype	# of HIV Templates Sequenced [†]	Protease Genotype	Reverse Transcriptase Genotype	Integrase Genotype	Outcome after DTG Resistance Detected?	Weeks on Study
1	1.08	<u>PR</u> : wild-type <u>RT</u> : M184V	d4T+3TC	16	9,429	AE	58	none	M184V, 100%	T66I, 10.3%; <u>G118R,</u> <u>98.3%</u>	Added LPV/r to OBT, suppressed	38
2	12.25	<u>PR</u> : I84V <u>RT</u> : wild-type	TDF+FTC	24	302	В	32	184V, 56.2%	none	S153Y, 3.1%; <u>R263K,</u> <u>15.6%</u>	Added RPV to OBT, did not suppress	190
3	2.64	<u>PR</u> : wild-type <u>RT</u> : M184V	ZDV+3TC	24	2,532	С	39	none	M184V, 100%; H221Y, 100%	<u>G118R, 89.7%</u>	Added ATV/r to OBT, suppressed	192
4	5.26	Wild-type	ZDV+3TC	29	16,627	В	140	none	M184V, 100%	E92Q, 35.0%; G118R, 27.9%; <u>N155H, 7.1%;</u> <u>R263K, 3.6%</u>	No change in ART, did not suppress	34
5	7.72	<u>PR</u> : wild-type <u>RT</u> : K103S, V106I, V108I, M184V, G190A	ZDV+3TC	48	1,408	В	8	none	K103S, 100%; M184V, 100%; G190A, 100%	H51Y, 12.5%; T97A, 62.5%; <u>G118R, 37.5%;</u> S147G, 62.5%; <u>N155H,</u> <u>62.5%</u>	No change in ART, did not suppress	72
6	2.48	<u>PR</u> : wild-type <u>RT</u> : M41L, M184V	ZDV+3TC	48	5,806	В	14	none	M184V, 100%	H51Y, 28.6%; <u>R263K‡,</u> <u>21.4%</u>	No change in ART, resuppressed but had intermittent viremia	168
7	2.44	<u>PR</u> : wild-type <u>RT</u> : M184V	ZDV+3TC	87	9,308	AE	93	none	D67N, 7.5%; M184V, 100%	E92G, 10.8%; <u>N155H,</u> <u>80.6%</u>	No change in ART, resuppressed but then had viremia	156
8	0.19	PR: wild-type RT: Y188H	3TC+ABC	89	13,748	D	65	none	M184V, 100%	H51Y, 10.8%; <u>G118R,</u> <u>1.5%</u>	No change in ART, suppressed	192
9	5.39	<u>PR</u> : wild-type <u>RT</u> : K103N	ABC+3TC	96	3,414	A	52	none	K103N, 100%; M184V, 53.8%	E138K, 3.9%; <u>Q148K,</u> <u>3.9%</u>	No change in ART, resuppressed but then had viremia	180
10	0.80	Wild-type	ZDV+3TC	139	341	F	2	none	M184V, 100%	T66I, 100%; <u>G118R,</u> <u>100%[§]</u> E138A, 100%	Did not suppress, but limited additional follow-up; study team recommended participant discontinue study due to DTG resistance	144
11	4.04	<u>PR</u> : wild-type <u>RT</u> : K103N, M184V	ZDV+3TC	144	1,622	A	47	M46L, 2.1%	K103N, 100%; M184V, 100%	G140E, 2.1%; <u>R263K,</u> <u>48.9%</u>	No change in ART, suppressed	180
12	16.95	<u>PR</u> : M46L <u>RT</u> : M41L	TDF+FTC +EFV	192	555	В	10	none	M41L, 100%	L74M, 100%; <u>G118R,</u> <u>100%</u>	No additional follow-up, final study visit	192
∣*All n	articipants	s were treatment-exi	nerienced									

Figure 1: PacBio HIV genotyping assay design. Assay targets most of HIV *pol* (codons PR19 to IN270) and adds barcodes (UMIs) during reverse transcription which are used to quantify the number of plasma HIV RNA templates sequenced and calculate mutational frequency. We aimed to sequence ≥100 templates per specimen; however, sequencing depth was limited for specimens with lower HIV RNA loads.

- HIV drug resistance (DR) was assessed using Stanford HIV Database with resistance to PIs, NRTIs, and NNRTIs defined by genotypic susceptibility scores (GSS) ≥30 and to DTG by GSS ≥10
- Phenotyping of participant-derived recombinant viruses was performed using a single-cycle reporter assay (Smith *et al.* 2019, PMID: 30803972) to determine the DTG 50%-effective concentration (**EC**₅₀) and EC₅₀ fold-change between screen/enrollment and subsequent timepoints
- We conducted analyses in SAS using generalized estimating equations to assess the association between selection of DTG resistance and viral suppression, accounting for correlations within subjects due to repeated measures over time and assuming an autoregressive correlation structure

**Visit week of first plasma specimen with dolutegravir resistance detected

[†]Median number of HIV templates sequenced from viremic specimens was 58 (IQR: 10-140)

[‡]R263K was not detected in subsequent viremic specimens at weeks 84 and 132

§G118R was detected in plasma with HIV RNA=175 c/mL by Sanger, but plasma did not amplify by PacBio; note, 16/18 viremic plasma with HIV RNA < 200 c/mL amplified by Sanger & 4/18 by PacBio

Pre-DTG Resistance & Virologic Outcome:

Results

- Genotyping at screen/enrollment was successful for 168/181 (92.8%) participants (12 specimens unavailable and one did not amplify)
- Resistance to PI was detected in 20/163 (12.3%); to NNRTI in 83/168 (49.4%); to NRTI in 76/168 (45.2%); and to participants' OBT (≥1 OBT drug) in 67/168 (39.9%) using ≥1% mutant threshold (Figure 2)
- Minority variants (<20% frequency) were uncommon at screen/enrollment
- Pre-DTG INSTI mutations were detected in 10/168 (5.9%) participants, all at <15% frequency and with GSS of 10 (H51Y, E138K, G140R, S147G)

Pre-DTG resistance was not associated with PDVF/ intermittent viremia using ≥20%

			102	E1301, 3147G, R203R	55	IZ I Z.9 [.]	5.0 ⁹	14 I I.J [.]	J .0 ⁹
3	South Africa	С	0 32 48 48	none L74I, G118R G118R T97A, G118R	80 35 21 17	1.7 ± 0.22 18 ± 6.0 46 ± 18 110 ± 78	11 27 65	1.8 ± 0.67 8.2 ± 2.6 10 ± 2.3 20 ± 9.9	4.6 5.6 11
5	Brazil	В	0 51	none G118R, E138K, V151I	71	19 ± 1.9 ^f	7.9 ^g	8.7 ± 2.9 ^f	3.6 ^g
9	Kenya	A	0 96	none E138K, Q148K	25 47	2.4 ± 0.73 58 ± 11	24	1.8 ± 0.23 55 ± 17	31
10	Brazil	F	0 139	none T66I, G118R, E138A	33 13	3.2 ± 1.2 52 ± 26	16	2.7 ± 0.88 14 ± 4.0	5.2
11	Kenya	A	0 144	none R263K	88 58	1.5 ± 0.28 5.5 ± 0.92 °	3.7	2.1 ± 0.070 4.8 ± 0.94	2.3
13	Botswana	С	0 36	none none	72 122	2.0 ± 0.37 2.7 ± 1.1	1.4	2.2 ± 0.15 2.3 ± 1.1	1.0
14	Thailand	AE	0 56	none none	56 86	2.4 ± 0.63 2.1 ± 0.80	0.88	2.2 ± 0.49 2.5 ± 0.79	1.1
15	Kenya	AG	0 91 96	none G140R E157Q	82 6.3 33	2.5 ± 0.32 UTD ^h 4.1 ± 1.3	UTD 1.6	2.7 ± 0.37 UTD 5.0 ± 1.0	UTD 1.9
15	Kenya	AG	0 91 96	none G140R E157Q	82 6.3 33	2.5 ± 0.32 UTD ^h 4.1 ± 1.3	UTD 1.6	2.7 ± 0.37 UTD 5.0 ± 1.0	

^a Weeks of dolutegravir treatment

 $^{\rm b}$ Replication capacity, expressed as the % of HIV-1_{\rm NL4-3} titer

^c Mean ± standard deviation

^d Fold change in EC₅₀ value relative to the corresponding week-0 clone, unless otherwise indicated

^e Bold type indicates a significant difference compared to the EC₅₀ for the corresponding week-0 clone (P < 0.05, ANOVA with Tukey's multiple comparisons test), unless otherwise indicated</p>

^f Bold type indicates significant difference compared to EC_{50} for HIV-1_{NL4-3} (P < 0.05, ANOVA with Tukey's multiple comparisons test) ^g Fold change relative to HIV-1_{NL4-3} (EC₅₀ for dolutegravir, 2.4 ± 0.72 nM; EC₅₀ for bictegravir, 2.4 ± 0.67nM)

^h UTD, unable to determine due to insufficient replication capacity

Summary

 Resistance at screen/enrollment to one or more drugs included as OBT was common in this cohort and was not associated with PDVF/intermittent viremia on DTG-based ART

Figure 3: Proportion of suppressed viral loads over study period in participants by genotype at viremia. Dots reflect proportion of total viral load measurements below suppression threshold for each participant, where viral suppression was defined as <400 c/mL (top) or <40 c/mL (bottom).

(**Table 1**), \geq 5%, or \geq 1% mutational frequency threshold

Table 1: Pre-DTG genotypes and virologic failure/viremia						
Viremia (n=49)	Suppressed (n=120)	Total (n=169)	Risk Ratio (95% CI)			
71	34	105	ref			
48	15	63	0.74 (0.44, 1.24)			
103	44	147	ref			
14	4	18	0.74 (0.30, 1.82)			
63	28	91	ref			
56	21	77	0.89 (0.55, 1.43)			
68	30	98	ref			
51	19	70	0.89 (0.55, 1.44)			
73	33	106	ref			
46	16	62	0.83 (0.50, 1.38)			
97	43	140	ref			
22	6	28	0.70 (0.33, 1.48)			
	Viremia (n=49) 71 48 103 14 63 56 68 51 73 46 97 22	Viremia $(n=49)$ Suppressed $(n=120)$ 71344815103441446328562168305119733346169743226	Viremia (n=49)Suppressed (n=120)Total (n=169)713410548156310344147144186328915621776830985119707333106461662974314022628			

- Plasma from PDVF/intermittent viremia detected selected resistance to DTG in ~25%, including as minority variants either alone or in addition to majority variants
- Selection of DTG resistance was significantly associated with increased viral suppression compared to no DTG resistance at PDVF/intermittent viremia; suggesting that intermittent adherence and/or low-level viremia as observed in PID9 (Figure 4) contributes to the selection of DTG-associated mutations
- Phenotypic analyses of PDVF/intermittent viremias detected resistance at levels predicted by genotypes; interestingly, bictegravir susceptibility appeared less impacted by the same INSTI mutations compared to DTG
- Analyses assessing all potential covariates predictive of DTG-associated mutation selection (e.g., enrollment viral load, CD4%, viral load pattern, adherence, dose and formulation of DTG, etc.) are ongoing

Acknowledgements

The authors gratefully acknowledge the dedication and commitment of the 181 study participants and their families without whom this study would not have been possible. The authors also wish to acknowledge the entire IMPAACT 1093 Protocol team, NIAID, NICHD, and the twenty-five IMPAACT sites and staff for their contributions to this work.

Overall support for the International Maternal Pediatric Adolescent AIDS Clinical Trials Network (IMPAACT) was provided by the National Institute of Allergy and Infectious Diseases (NIAID) with co-funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Institute of Mental Health (NIMH), all components of the National Institutes of Health (NIH), under Award Numbers UM1AI068632 (IMPAACT LOC), UM1AI068616 (IMPAACT SDMC) and UM1AI106716 (IMPAACT LC), and by NICHD contract number HHSN2752018000011. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

