Babies and bNAbs Peds Pharmacology and Lessons from Adults

Edmund V. Capparelli, PharmD, FCP Professor, Clinical Pediatrics and Pharmacy Host-Microbe Systems and Therapeutics UC San Diego La Jolla CA IMPAACT Pharmacology Specialty Laboratory / Pharmacometrics Core Consultant Pharmacokineticist, Vaccine Research Center

Overview

- Anti-HIV mAbs (bNAbs) uses in infants, children and adults
- Important issues that affect bNAb PK/PD variability and differs from small molecules
- Use of PK/PD modeling and simulation to optimize mAb studies and dosing

bNAbs for HIV Prevention and Treatment

Prophylaxis

- PrEP works for sensitive virus (AMP studies)
- Perinatal
- Breast Feeding limited ARV options in infants

Treatment

- Limit initial viremia and HIV reservoir seeding in acute infection (infants)
- Enhance adherence and reduce toxicity
- Substitution for ARVs
- Promote adaptive immunity alone and in combination with vaccines

PK/PD considerations and targets different based on setting

Antibody Distribution and Clearance

4

- Volume of distribution (Vd) is typically small ~3-8 L
- Nonspecific Clearance (CL) Proteolysis with lysosomal recycling
 - CL 90-500 mL/d
 - t_{1/2} 10-30 d
- Standard drug metabolizing enzymes DME (CYPs, UGTs) are <u>NOT</u> involved in mAb elimination
- PK "Boosting" through stabilization of FcRn binding in at low pH
- Additional Clearance Mechanisms
 - Immunogenicity and ADA Formation
 - Target Mediated Drug Disposition
 - Often non-linear

Antibody Disposition and Clearance Pathways

Z Temrikar Ped Drugs 2020

Characterizing mAb Elimination

Clearance (CL), Half-life, and Target Mediated Drug Disposition (TMDD)

6

D

CL – PK parameter used to characterize elimination Dictates the AUC / average concentration of a dosing regimen

- Þ T_{1/2} - "Hybrid" PK parameter : A Function of Distribution (Vd) and Elimination (CL):

 - $T_{1/2} = 0.693 * Vd / CL$ Dictates the peak/trough fluctuation during dose interval
 - Various ways to estimate and sensitive to study design

Target Mediated Drug Disposition (TMDD)

- mAb Binding to Antigen influence mAb elimination (CL) and/or distribution (Vd)
- Commonly seen with mAbs for oncology
- May encounter with bNAb combinations and with HIV viremia

D Study design and analysis complexities with slow bNAb elimination

Daratumumab*

Target Mediated Drug Disposition of mAbs

Binding effects PK at low dose/conc

Trastuzumab

Maulik et al J PKPB 2016

Immunogenicity Can Impact mAB PK Primate Study of PGT121-YTE

Table 1. Pharmacokinetic parameters in four macaques following a single SC injection with 5mg/kg PGT121-YTE.

PK parameter	12D010	09D181	12D046	11D042
T1/2 (hr)	139	177	55	35
Cmax (µg/ml)	131	108	112	133
AUC (µg-hr/ml)	27,443	18,570	13,493	18,499
MRT (hr)	169	211	92	90

https://doi.org/10.1371/journal.pone.0212649.t001

Clinical development of PGT121.414LS does **<u>NOT</u>** have the YTE Fc-modification

Rosenberg PLOSOne 2019

Why PK / PD Modeling of bNAbs?

- Builds on PK knowledge of bNAb best approach to assess dose with predictions and simulations for future studies.
- Single dose PK studies very long in duration due to washout.
- Non-compartmental PK evaluation of terminal slope overly depended on very late conc and can give imprecise terminal t_{1/2} and AUC calculations.
- Studies often rely on small dose cohorts n=3-4. Modeling allows overall analysis across dose cohorts and test of PK linearity.
- Better suited to evaluate dynamic and multiple covariates
 - HIV status, viral load, dose, weight/age

Absorption of bNAbs with SC Administration

- Absorption and distribution driven by lymphatic flow (100) mL/h) not blood flow (300-400 L/h)
- Adult PK studies focus on IV administration with some low dose SC assessments
- Infant PK studies focus on SC administration
- Dose can impact SC bioavailability and rate of absorption
- Rate of SC absorption
 - Rapid in neonates compared to adults t_{max} at 24-48h
- Bioavailability (F)
 - SC bioavailability is less than complete often ~40-90%.

 - May be different between adults and infants May be different between native Fc and LS modified Fc

bNAb PK with SC Administration -

Larger Doses Can be Administered SC with Hyaluronidase

SC bNAb PK with Hyaluronidase

SC (+Hyaluronidase) vs. SC (-Hyaluronidase) vs. IV

SC mAbs Examples in Oncology

Name	Antibody		
Abagovomab	murine monoclonal antibody against CA125		
Veltuzumab	humanised monoclonal antibody against CD20		
Alemtuzumab (MabCampath®)	humanised antibody against CD52		
Rituximab	chimeric (murine/human) monoclonal		
(MabThera®)	antibody against CD20		
Trastuzumab	humanised monoclonal antibody against		
(Herceptin®)	HER2		
Denosumab	human monoclonal antibody against RANK		
(Xgeva®)	ligand		

Extending the bNAb Half-life

Fc region binds with high affinity to FcRn at acidic pH (<6.5) in endosome
Protects antibody from endosomal degradation
IgG released back into circulation at physiological pH (7.4)
<u>Results in prolonged circulating half-life</u>

AIDS Clinical Trials Network

Reduced mAb CL with Fc Modifications

Enhanced bNAb - FcRN binding under acidic pH (<6.5) in endosome protects bNAb from endosomal degradation</p>

Pre-clinical studies suggest effect seen in serum, vaginal and rectal tissues

Impact of FC modification not the same for all bNAb

Important Factors to Consider to Explore in Clinical Pharmacology of bNAbs

- Age / Weight
- bNAb/bNAb combinations
- HIV Status on PK
- Target bNAb concentrations
- SC dosing +/- hyalurondise

VRC01 in HIV Exposed Infants IMPAACT P1112 – Arms 1-3

20-40mg/kg +/- 20mg/kg q 4WK

40mg/kg then 20mg/kg q 4WK

C Cunningham JID 2020

Model Informed Infant VRC01 Study Design -PopPK to Simulate VRC01 for Treatment (IMPAACT 2008)

J Li et al CPT 2021

PK of VRC07-523LS vs VRC01 and VRC01LS

Ledgerwood Clin Exper Immunol 2015, M Gaudinski PLOS Med 2018, Gaudinski Lancet HIV 2019, Cunningham HIVR4P 2021, Cunningham CROI 2022

VRC07-523LS PK in Infants and Adults

AIDS Clinical Trials Network

VRC01LS Pharmacokinetics – Newborn vs. Adult

Yang J, HIV Pcgy Workshop 2020

Initial PK Modeling and Simulation of PGT121.414LS for 2037 Infant Effects Extrapolated from P1112 (VRC01LS and VRC07-523LS PK)

- Working with Qing Ma (Buffalo) on modeling and simulation to design adult/infant studies
- Updating with PK data from HVTN 136 (Y Huang/C Yu 258-EXS Ma Capparelli 136)

Preliminary bNAb PK Model and Simulation

Predicted PGT121,414I S in Infants

Tatelo Study – VRC01LS and 10-1074 for Maintenance of HIV Suppression in Toddlers Treated with ARVs from Birth

International Maternal Pediatric Adolescen **AIDS Clinical Trials Network**

Tatelo Study – VRC01LS and 10-1074 for Maintenance of HIV Suppression in Toddlers Treated with ARVs from Birth

Results:

21

PK Step and Step 1

- VRC01LS troughs were lower than expected based on adult PopPK model and simulations
 – Dose increased in Step 2
- No difference in CL or troughs when given in combination
- Vd 46% larger 10-1074 / 15% smaller VRC01LS in combination

Step 2 (ATI)

- 11 (44%) maintained HIV RNA <40 copies/mL through 24 wks of bNAb-only treatment 95% CI: 24%-65% success
- 1 (4%) had a single viral load of 234 copies/mL at week 16, then returned to < 40 copies/mL
- 13 (52%) had viral rebound to >400 copies/mL, median time to failure = 4 weeks (range 1, 20 weeks)

E Capparelli JAIDS 2022, R Shapiro CROI 2022

VRC01LS - 30 mg/kg x1 -> 15 mg/kg Every 4 Weeks

Combo bNAb PK in Healthy Adults – PGDM1400 alone and with PGT121

	Median	-	
Parameter	Group 1 (n = 9)	Group 2 (n = 9)	P-value
CL	0.19 [0.17, 0.21]	0.20 [0.14, 0.27]	0.6048
Vz	5.72 [4.79, 6.35]	5.62 [3.42, 8.04]	0.6665
AUCADJ	398.07 [263.76, 507.73]	362.40 [301.49, 476.98]	0.7304
Elimination half-life	20.77 [17.76, 24.74]	17.43 [15.29, 24.09]	0.0503
Note: ADJ: dose- and weight-	adjusted.		

B Julg Nature Med 2022

PK of Combined PGDM1400 with PGT121 More Rapid Elimination in HIV Viremic Adults – Wk12 Conc reduced by ~90%

	Elimination half-life		
	Median (days)	Min	Max
HIV uninfected			
PGDM1400	19.4	15.3	24.7
PGT121	20.2	15.8	27.8
HIV infected			
PGDM1400	11.0	10.1	18.7
PGT121	11.8	10.4	20.5
VRC07-523LS	29.3	27.4	37.9

B Julg Nature Med 2022

HIV Status Affects bNAb PK

24

<u>10-1074</u>

VRC01

• HIV Negative • HIV Positive

M Caskey Nat Med 2017

J Li CPT 2020

bNAbs for PreP – the AMP Studies Resistance Limits Value of Single bNAbs

AMP VRC01 Dosing

10 mg/kg q 8 WK for target conc = 5 mcg/mL 30 mg/kg q 8 WK for target conc = 15 mcg/mL

(Y Huang et al mABs 2017)

ACTG 5340 - VRC01 Observed and Predicted Following 40mg/kg IV q 3 Weeks

AIDS Clinical Trials Network

26

PD Target for Prevention of HIV Infection

Meta-Analysis SIV Preventions with Various bNAbs (N=274) Challenge Route: 76% rectal, 22% vaginal, 3% oral

bNAb PK/PD Knowledge Gaps to Inform Infant Dosing

- bNAb PK studies in patient populations are needed to understand impact of HIV infection and other factors for models to predict exposure of dosing strategies.
- Changes in PK parameters (CL, Vd and t_{1/2}) with bNAb combinations and repeat dosing are likely modest but still require precise characterization as these effects are magnified with extended dosing intervals.
- Better understanding of PD targets based on purpose.
- Distribution and PK at the target tissue level.
- Translating PK following SC administration in adults, using hyaluronidase, to infants

Acknowledgements

- Vaccine Research Center VRC601,VRC602, VRC605 and VRC606 Study Teams and TATELO CAPRISA Studies
- Martin R. Gaudinski MD
- John R. Mascola MD
- Barney S. Graham MD
- Julie E. Ledgerwood DO
- Adrian McDermott MD
- Koup A. Richard MD
- · Emily E. Coates PhD
- Lynn Morris PhD
- Katherine Houser PhD
- Gama Lucio PhD
- The International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) Network P1112 and 2008 Study Teams
- Coleen K. Cunningham MD
- Elizabeth J. McFarland MD
- Petronella Muresan MS
- Charlotte Perlowski MS
- TATELO Study Team
- Roger L. Shapiro MD
- Daniel R. Kuritzkes MD PhD
- Mathias Lichterfeld MD PhD
- Kenneth Maswabi MD
- Molly Pretorius Holme MS
- Marina Caskey MD
- Shahin Lockman MD
- Kara Bennett MS

National Institute of Allergy and Infectious Diseases

UC San Diego in Center for Research in Pediatric and Developmental Pharmacology (RPDP)

- Victor Nizet MD
- Adriana Tremoulet MD MAS
- Brookie Best PharmD MAS
- · Jeremiah Momper PharmD PhD
- · Mina Nikanjam MD PhD
- Jincheng Yang PharmD (Astra-Zenica)
- Jerry Li PharmD (Pfizer)

CAPRISA 12A/12B Study Teams

- Sharana Mahomed MD
- Nigel Garrett MD
- Dan H. Barouch MD PhD
- Lara Lewis PhD
- Nono Mkhize PhD
- Salim S. Abdool Karim MD

Overall support for the International Maternal Pediatric Adolescent AIDS Clinical Trials Network (IMPAACT) was provided by the National Institute of Allergy and Infectious Diseases (NIAID) with co-funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Institute of Mental Health (NIMH), all components of the National Institutes of Health (NIH), under Award Numbers UM1AI068632-15 (IMPAACT LOC), UM1AI068616-15 (IMPAACT SDMC) and UM1AI106716-09 (IMPAACT LC), and by NICHD contract number HHSN2752018000011. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

<u>Sites</u>

Cape Town, S. Africa Texas Children, Houston Chicago Children's, Chicago Univ of Miami, Miami UC San Diego, San Diego Bos Medical Center, Boston Jacobi Medical Center, Bronx Emory, Atlanta Univ of Southern California, LA Univ of Florida, Jacksonville Univ of Colorado, Aurora South Florida, Fort Lauderdale Johns Hopkins Univ, Baltimore UC Los Angeles, LA Bronx-Lebanon Hospital, Bronx Univ of Puerto Rico. San Juan Harare Family Care, Harare NIH Health Clinical Center. Bethesda Botswana-Harvard

